NEI Introduces Optically Transparent Hardcoat with UV Protection
June 30, 2021
Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced NANOMYTE® UVP-100, an optically transparent coating that provides simultaneous protection from ultraviolet radiation, as well as from scratching and abrasion. A key attribute of the single layer UVP-100 coating is that it is relatively thin, only about 5 – 10 microns thick. The new coating can be used on a wide variety of polymer materials, particularly those that are susceptible to damage by ultraviolet light from the sun. NANOMYTE® UVP-100 complements NEI’s portfolio of functional coatings, which include easy-to-clean, hydrophobic, anti-fog, anti-ice, and abrasion resistant coatings.
UVP-100’s coating composition has a unique chemistry that’s comprised of highly efficient UV-absorbing materials that are incorporated into a hard coat matrix. The figure below shows the UV-Vis spectrum of UVP-100 on glass, as compared to that of an uncoated glass control. 90% of the UV radiation with wavelength <375 nm is essentially blocked with a film approximately 6 µm thick. The coating remains fully transparent and is highly stable to UV radiation. The coating showed no damage (e.g., cracking and delamination) even after 250 hours of continuous exposure to intense UV radiation (0.9 W/m2) at 60°C in QUV accelerated weathering testing.

UV-Vis spectrum of UVP-100 vs. uncoated glass (control)
x

Uncoated polycarbonate plaque (left) vs. NANOMYTE® UVP-100 coated polycarbonate plaque (right) – after exposure to ultraviolet light for the same time period
The development of NANOMYTE® UVP-100 coating is based on NEI’s patented NANOMYTE® SR-100 scratch resistant coating technology, which is being used in a number of commercial applications. Using standard abrasion tests, such as ASTM D-1044 (500-gram load, CS-10F wheel, 1000 cycles), uncoated polycarbonate will generate a measured delta haze of 30 – 35%. Commercially available hard coatings on polycarbonate lead to a delta haze of 2% to 6%. By comparison, NANOMYTE® SR-100 typically generates < 1% delta haze (ASTM D1044), and UVP-100 exhibits a delta haze value under 2%. Additionally, NEI’s UVP-100 coating has excellent chemical resistance, passing the 2-hour test for 0.1N HCl, 0.1N NaOH and xylene (i.e., no damage can be seen after 2 hours exposure to the above chemicals). The coating also has good solvent resistance – displaying no damage after 200 double rubs of MEK on the coating surface.
Application of UVP-100 is easy, using standard coating processes (such as immersion, flow, or spray coating) that require no specialized equipment. NEI also supplies a primer product – NANOMYTE® SR-Primer – which works well with a range of plastics to promote adhesion.
Additional Information: NANOMYTE® UVP-100 Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B) | Request a Quote
Download Press Release (pdf) ↓
About NEI: NEI Corporation is an applications-driven company that utilizes materials science & chemistry to develop and produce Advanced Materials for a broad range of markets. NEI’s line of Protective Coatings provide tailored functionalities, such as hydrophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anticorrosion, and icephobicity.
NEI is most receptive to new applications brought to it by its customers. A typical interaction begins by applying the coating on the customer’s parts and submitting it to the customer for evaluation. Either parts are coated at NEI’s applications laboratory, or the customer procures a sample quantity of liquid coating for in-house application. The implementation process then moves through pilot scale tests and eventual qualification. NEI’s engineers support the development and qualification efforts of its customers every step of the way, including drawing up technical specifications and engaging with third party coating applicators, if necessary.
For more information, give us a call or email us.





The recently allowed patent application describes durable hydrophobic coating compositions that are highly desirable for numerous applications, as they impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. The patented compositions are comprised of functionalized perfluoropolyethers (PFPEs), which are known for their non-stick and lubricating properties. It has been a major technical challenge to incorporate PFPEs into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. The patent claims transparent and homogeneous compositions that overcome the stability and adhesion issues. The compositions result in a micron-thick, durable hydrophobic coating that cannot easily be removed by abrasion, harsh cleaners, or chemicals. The patent is the basis for NEI’s hydrophobic coating products, 

Gains in productivity and efficiency are possible when a coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. This realization has sparked great interest in functional coatings in recent years for applications that traditionally have not used paints or coatings. A good example is the use of anti-ice coatings on power transmission lines. Mitigating ice accumulation will help prevent power outages, which has a tangible and beneficial economic impact. Another example is the use of a surface treatment to increase the efficiency of power generation turbines.
More often than not, many of the functionalities mentioned above need to be integrated into a single coating or surface treatment. For example, a transparent coating that resists finger printing also needs to be scratch resistant and durable. A coating that prevents fogging in eyewear and other transparent surfaces must also be durable and resistant to chemicals. Further, in order to meet the cost criteria, application of the coating must be compatible with conventional coating methods such as spray, dip, brush or flow. Over the past few years, NEI Corporation’s concerted efforts to develop and implement practical, multi-functional coatings are now coming to fruition.
Backed by a bevy of issued and pending patents, NEI has introduced an array of coating products under the registered trade name NANOMYTE®. For example,
Self-healing principles can also be applied to surface treatments of metals, whereby the pretreatments can mimic the performance of chromate conversion coatings. To this end, NEI has developed a series of pretreatments for different metals where a chemical self-healing mechanism imparts corrosion resistance. For example,
Durable hydrophobic coatings are highly desirable for numerous applications as they usually impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. Further desirable properties of such coatings include a high degree of scratch/abrasion resistance, excellent adhesion, and chemical resistance, all of which are critical in maintaining a durable coating. In addressing these needs, NEI’s recently developed
Scratch resistance is a sought-after property for coatings in a variety of applications, such as ophthalmic and sports-wear lenses, automobile and airplane windows. Plastic substrates, such as polycarbonate and acrylic, can scratch easily and lose transparency quickly during daily use and maintenance. Hard and optically transparent coatings for plastic substrates possess a significant market potential. NEI offers a patented (US Patent 9,006,370) transparent, scratch-resistant coating called