, ,

NEI Company Updates – Summer 2023

What’s New at NEI Corporation

June 21, 2023

We’re Expanding!

Since 2005, NEI Corporation has operated a 10,000 square foot, state-of-the-art materials manufacturing and testing facility in Somerset, New Jersey. This spring, NEI began expanding its facilities with an additional 9,200 square feet of space. The add-on facility will allow the company to install new equipment in order deliver larger quantities of materials to better serve its customers.


New Product: LMFP Electrode Sheets


NANOMYTE® BE-80E

NEI is excited to introduce Lithium Manganese Iron Phosphate (LiMnxFe(1-x)PO4) to its line of electrode sheets for Lithium-ion batteries. NANOMYTE® BE-80E is a cast electrode tape of LMFP, which is a new, higher nominal voltage variation of LFP.

Product PageView Spec Sheet


NEI Is Hiring – Join our Team!

NEI Corporation develops, manufactures, and supplies Specialty Materials for diverse industrial applications. NEI employs a multi-disciplinary group of motivated scientists and engineers and is looking for qualified individuals to join our team.


Have a Question?

Try our Frequently Asked Questions page, or you can contact us directly:

Phone: Call us at +1 (732) 868-3141 (Monday – Friday, 8:30 am to 5:30 pm ET)

Email: Send us a message and someone will be in touch with you soon.

, , , ,

NEI Expands Selection of Materials for Lithium-ion & Sodium-ion Batteries

January 13, 2022

Somerset, New Jersey (USA) – Today, NEI Corporation announced customers can now order from an expanded selection of cathode, anode, and solid electrolyte materials for both lithium-ion and sodium-ion batteries. The company, which is a leader in the development, manufacture, and supply of specialty materials, has been a go-to organization for producing and delivering custom powders and dispersions of particles in liquids and polymers, as well as electrodes cast on metal foil.

NEI offers a variety of battery materials, with a particular forte in producing specialty materials with compositions and particle morphologies that are not commonplace. In addition, NEI has expertise in producing composite particles that have a surface coating. Off-the-shelf products are sold under the tradename NANOMYTE®.

“We want our customers to easily access high quality and consistent battery materials so they can focus on their core mission,” said Dr. Ganesh Skandan, CEO of NEI Corporation. “The NEI team stands ready, willing, and able to produce and supply materials that our customers want, in any quantity needed, for them to pursue their commercialization efforts.”

Particle Size Distribution graph of Na0.44MnO2+x , which is typical of most of NEI's sodium based cathode/anode powders

Particle size distribution (PSD) of Na0.44MnO2+x , which is typical of most of NEI’s sodium based cathode/anode powders.

NEI has been routinely supplying increasing quantities of simple metal oxide compositions such as Na0.44MnO2+x and Na0.7MnO2+x with a narrow particle size distribution. The portfolio of sodium-ion compositions now includes more complex materials, such as sodium iron phosphate (NaFePO4), sodium nickel phosphate (NaNiPO4), sodium titanium phosphate (NaTi2(PO4)3), sodium chromium oxide (NaCrO2), and others. The average aggregate particle size (D50) for most compositions can be tailored to be in the range of 1 – 2 µm, with the primary particles being much smaller. The particle structure can be further tuned to include a surface coating of carbon or a conducting polymer, such as polyaniline, PANI, or an ionically conducting ceramic material. Some of the materials have been tested and validated in-house using half-cell configuration (i.e., sodium metal anode). For example, Na0.44MnO2+x has a second cycle charge and discharge capacity that is > 105 mAh/g.

Second cycle charge/discharge profile of Na0.44MnO2+x cathode powder

In addition to engineering the particle morphology, all sodium-based cathode and anode materials can be supplied as cast electrodes on a current collector of choice. Customers can specify the active material, binder content, amount of conducting carbon and active material per unit area (in case of cathode and anode).

NEI Corporation has built a reputation for supplying consistent and high-quality solid electrolyte materials – oxide materials, such as Al-doped lithium lanthanum zirconium oxide (LLZO) and tantalum-doped LLZO (LLZTO), phosphate compounds, such as LATP or LAGP, and a variety of sulfide-based materials. While the average particle size (D50) for these standard powders is in the 3 – 5 microns range, customers can request a smaller D50.

Cole-Cole plot of sintered LAGP pellet

Cole-Cole plot of sintered LAGP pellet

The ionic conductivity of the oxide materials, measured in-house using Electrochemical Impedance Spectroscopy in a test cell shown in the inset of the picture (left), is in the range of 1 x 10-4 S/cm to 5 x 10-4 S/cm, and that of sulfides can be as high as 1 x 10-3 S/cm.

A recent and exciting development has been the offering of composite solid electrolyte materials in the form of either a polymer-based dispersion or cast membrane. Customers can choose any oxide ceramic solid electrolyte and a base polymer or co-polymer from PEO, PVDF, PVDF-HFP, and PAN. The type of lithium salt in the polymer can be selected from LiTFSI, LiClO4, LiFSI, and LiBOB.

In addition to increasing the suite of materials being offered, NEI has developed new materials synthesis capabilities, which serve as demonstration stations for exploring new compositions that are difficult to produce using conventional processing. A case in point is precursor materials obtained from recovered nickel, cobalt and manganese salts from recycled lithium-ion batteries. The solution-precipitation setup, installed at NEI, serves as a test-bed to determine processing parameters for materials such as NMC532 and NMC622, or any mixed metal oxide for that matter.

There is also increasing interest in cathode materials that are fluorinated and/or contain vanadium, which as multiple valence states and can lead to high capacities. To this end, NEI has produced LiFeSO4F and LiVPO4F with a high degree of crystallinity and phase purity.

Overall, the introduction of these new materials and processes will provide new capabilities to lithium battery developers and manufacturers to enable practical solid-state batteries. Dr. Skandan adds, “It is exciting for the team at NEI to tread on uncharted waters and explore synthesis and processing of new materials, and particularly using newly developed processes. We welcome the opportunity to serve the needs of the Battery community.”

Download Press Release (pdf) ↓


About NEI: Founded in 1997, NEI develops, manufactures, and sells advanced materials for a broad range of industrial customers around the world. The company’s core competencies are in designing, developing, and producing products that meet the specific application needs of its customers. More importantly, NEI is a solutions provider, working closely with customers to produce and implement materials for their applications. NEI’s products, which are sold under the registered trademark NANOMYTE®, are backed by a suite of issued and pending patents. NEI’s products include:  Lithium-ion Battery Materials, Na-ion Battery Materials, Functional & Protective Coatings, and Specialty Nanoparticle-based products. NEI also offers associated materials characterization and testing services.

For more information, give us a call or email us.

, , ,

NEI Introduces Optically Transparent Hardcoat with UV Protection

June 30, 2021

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced NANOMYTE® UVP-100, an optically transparent coating that provides simultaneous protection from ultraviolet radiation, as well as from scratching and abrasion. A key attribute of the single layer UVP-100 coating is that it is relatively thin, only about 5 – 10 microns thick. The new coating can be used on a wide variety of polymer materials, particularly those that are susceptible to damage by ultraviolet light from the sun. NANOMYTE® UVP-100 complements NEI’s portfolio of functional coatings, which include easy-to-clean, hydrophobic, anti-fog, anti-ice, and abrasion resistant coatings.

UVP-100’s coating composition has a unique chemistry that’s comprised of highly efficient UV-absorbing materials that are incorporated into a hard coat matrix. The figure below shows the UV-Vis spectrum of UVP-100 on glass, as compared to that of an uncoated glass control. 90% of the UV radiation with wavelength <375 nm is essentially blocked with a film approximately 6 µm thick. The coating remains fully transparent and is highly stable to UV radiation. The coating showed no damage (e.g., cracking and delamination) even after 250 hours of continuous exposure to intense UV radiation (0.9 W/m2) at 60°C in QUV accelerated weathering testing.

UV-Vis Spectrum of UVP-100

UV-Vis spectrum of UVP-100 vs. uncoated glass (control)

x

Uncoated polycarbonate plaque (left) vs. NANOMYTE® UVP-100 coated polycarbonate plaque (right) – after exposure to ultraviolet light for the same time period

The development of NANOMYTE® UVP-100 coating is based on NEI’s patented NANOMYTE® SR-100 scratch resistant coating technology, which is being used in a number of commercial applications. Using standard abrasion tests, such as ASTM D-1044 (500-gram load, CS-10F wheel, 1000 cycles), uncoated polycarbonate will generate a measured delta haze of 30 – 35%. Commercially available hard coatings on polycarbonate lead to a delta haze of 2% to 6%. By comparison, NANOMYTE® SR-100 typically generates < 1% delta haze (ASTM D1044), and UVP-100 exhibits a delta haze value under 2%. Additionally, NEI’s UVP-100 coating has excellent chemical resistance, passing the 2-hour test for 0.1N HCl, 0.1N NaOH and xylene (i.e., no damage can be seen after 2 hours exposure to the above chemicals). The coating also has good solvent resistance – displaying no damage after 200 double rubs of MEK on the coating surface.

Application of UVP-100 is easy, using standard coating processes (such as immersion, flow, or spray coating) that require no specialized equipment. NEI also supplies a primer product – NANOMYTE® SR-Primer – which works well with a range of plastics to promote adhesion.

Additional Information: NANOMYTE® UVP-100 Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B) | Request a Quote

Download Press Release (pdf) ↓


About NEI: NEI Corporation is an applications-driven company that utilizes materials science & chemistry to develop and produce Advanced Materials for a broad range of markets. NEI’s line of Protective Coatings provide tailored functionalities, such as hydrophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anticorrosion, and icephobicity.

NEI is most receptive to new applications brought to it by its customers. A typical interaction begins by applying the coating on the customer’s parts and submitting it to the customer for evaluation. Either parts are coated at NEI’s applications laboratory, or the customer procures a sample quantity of liquid coating for in-house application. The implementation process then moves through pilot scale tests and eventual qualification. NEI’s engineers support the development and qualification efforts of its customers every step of the way, including drawing up technical specifications and engaging with third party coating applicators, if necessary.

For more information, give us a call or email us.

, ,

NEI Introduces PFC-free NANOMYTE® SR-200EC

March 23, 2021

Somerset, New Jersey (USA) – NEI Corporation recently introduced NANOMYTE® SR-200EC, a liquid coating product that results in relatively thin, clear coatings with an easy-to-clean functionality. The thermally cured coating is mechanically robust, highly repellent to water and oils, and enhances lubricity, however the key aspect is that the coating is free of fluorinated materials and environmentally sustainable.

NEI’s Easy-to-Clean coatings implement both scratch resistance and non-stick properties to surfaces. Soil and liquids simply slide off the surface of coated components, thereby helping prevent deposits and extending the time between cleanings. The clear coatings can be applied to plastics and metals, as well as glass and ceramics, and are ideally suited for applications in high traffic areas that require frequent cleaning and durability. The Easy-to-Clean line of coatings comes in four different formulations, each with varying temperatures and conditions for curing:

NANOMYTE® SR-200EC is a 2-part coating and is sold in ready-to-mix liter and gallon kit quantities. It can be applied on plastics (such as polycarbonate, PMMA, PET, polyurethane, & epoxy) as well as metals (such as stainless steel, aluminum, titanium, brass and chrome). While it is recommended to be applied to a thickness of a few microns, it can also be applied thinner – much less than one micron.

Additional Information: Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B)


About NEI Corporation: NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI’s NANOMYTE® line of Protective Coatings provide tailored functionalities, such as hydrophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anticorrosion, and icephobicity. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

For more information, give us a call or email us.

, ,

NEI Introduces Fast-cure Anti-fog Coating

August 19, 2020

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced NANOMYTE® SAF-200, a fast cure, durable anti-fog coating with excellent water resistance. The development of the new coating has come about as a result of incorporating years of experience in tailoring the chemistry of coatings to meet customer needs. SAF-200 is amenable to spray, dip, flow, roll, and gravure coating processes, and can be cured within 2 to 5 minutes at a temperature range of 80 – 120 °C.

Anti-fog coatings generally work by creating a hydrophilic surface where condensed moisture spreads into an even film without forming droplets. These coatings have typically suffered from limited anti-fog performance, insufficient abrasion resistance and poor cleanability. NEI’s anti-fog coatings overcome these issues and provide excellent abrasion resistance in addition to anti-fog characteristics. The novel coating technology is based on NEI’s patented scratch-resistant transparent coating, commercially known as NANOMYTE® SR-100. The scratch resistant base coating formulation has been modified with unique amphiphilic compounds which are locked into the coating matrix, thereby leading to durable anti-fog performance. The scratch-resistant coating matrix provides a high degree of mechanical stability.

NANOMYTE® SAF-200 is ideally suited for surfaces where prevention of fogging is needed, such as face shields, respirators, goggles, outdoor signage, camera lenses, environmental enclosures, bathroom mirrors, and other applications where fogging needs to be mitigated. The 2-part liquid coating solution can be applied by dipping, spraying, roll or flow coating. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Additional Information: Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B)

Download Press Release (pdf) ↓


About NEI Corporation: NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI Introduces Three New Battery Materials to its Product Line

June 24, 2020

Somerset, NJ (USA) – NEI Corporation recently introduced three new products, further expanding its product line of Battery Electrode Sheets. The new materials cater to the growing need in the industry for high performance cathode and anode electrodes for lithium and lithium-ion batteries.

NANOMYTE® BE-70E is a cast electrode sheet of Sublimed Sulfur powder. Sulfur cathodes offer a high theoretical capacity of 1,672 mAh/g in a Li-S cell, which is an order of magnitude higher than those of the transition-metal oxide cathodes. The high capacity is based on the conversion reaction of sulfur to form lithium sulfide (Li2S) by reversibly incorporating two electrons per sulfur atom. Li−S cell consists of a lithium metal anode, an organic electrolyte, and a sulfur composite cathode, which leads to a theoretical cell capacity of 1,167 mAh/g. BE-70E has a practical capacity of at least 800 mAh/g. The discharge reaction has an average cell voltage of 2.15 V, resulting in a high theoretical gravimetric energy density of 2,509 Wh/kg at the cell level.

NANOMYTE® BE-150E is a cast electrode sheet of Silicon-Graphite composite powder. Silicon (Si) has attracted great attention due to its remarkably high theoretical specific capacity of ~4200 mAh/g, making it one of the most potential anode materials for advancing high-energy lithium-ion batteries. Si-Graphite composite (Si-C) offers the leverage to improve the electrochemical properties of Si with excellent stability attributed to the surrounding carbon-based matrix and improved electric conductivity network. Si-C tapes showed a nominal capacity of 750 mAh/g at 0.05C (electrode loading, 4 mAh/cm2) and demonstrated excellent cycling stability at 0.2C rate.

NANOMYTE® BE-400E is a cast electrode sheet of Niobium Oxide powder (Nb2O5), which is a new electrode material with pseudocapacitive charge storage being introduced to the market for the first time as a potential anode material. It is capable of exceptionally high rate charge as well as discharge (6 – 10C), with good cycling stability (1,000 – 3,000 cycles) and minimal heat generation during high-rate charge-discharge. The unique architecture of the oxide material enables rapid lithium diffusion on a macro and micro-scale enabling enhanced rate performance.

NEI offers a variety of cathode and anode electrode sheets, suitable for a wide range of Lithium-ion battery applications. Standard electrode sheets are cast single-side on 5″ x 10″ foil current collectors, and are available in ready-to-ship packages of 2, 5, and 10 sheets (per material). For customers with specific needs, tape specifications such as the active material loading, coating thickness, binder type (aqueous/non-aqueous), binder content, or current collector can be modified.

Additional Information: Specification Sheets ¦ Safety Data Sheets

Download Press Release (pdf) ↓

About NEI Corporation: NEI is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. We produce battery materials through our scalable and economical solid state synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, give us a call or email us.

, ,

NEI’s UV-Protect Technology featured in Coatings World Magazine

September 2018

NEI has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

Read the Complete Article:

https://www.coatingsworld.com/issues/2018-09-01/view_breaking-news/nei-introduces-uv-protect-coating-technology

About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI introduces NANOMYTE® SE-50, Polymer-Ceramic Composite Electrolyte

May 22, 2018

Somerset, NJ (USA) – NEI Corporation is excited to introduce its latest product: NANOMYTE® SE-50. The solid electrolyte is a hybrid, polymer-ceramic composite material for use in solid state lithium batteries. SE-50 has high Li+ ionic conductivity, is compatible with 5V cathode materials, and provides very low resistance in the cell, making the innovative material unique among available solid electrolytes.

The two key challenges for achieving high performance solid state batteries are the low ionic conductivity of many solid electrolytes and the large impedance posed by the electrode-electrolyte interface. SE-50 has been engineered to address these challenges by having a high Li+ ionic conductivity, combined with low interfacial resistance between the electrode and solid electrolyte. These properties are enabled by the unique elastomeric self-adhesive properties of the solid electrolyte. In addition, SE-50 has excellent electrochemical stability, which allows its use with high voltage cathode materials, such as NMC.

NANOMYTE® SE-50 is used as the separator and is added to the electrode as well, where it can be cast either into a free standing film or directly onto a cathode tape for cell assembly. When fabricating cells, the polymer-ceramic electrolyte is incorporated into the electrode tape in order to confer ionic conductivity to the electrode. This is in contrast to cells using a liquid electrolyte, where the liquid electrolyte molecules can get access to the pores in the electrode. When used in conjunction with traditional binders, such as PVDF, SE-50 serves as a conductive binder to afford Li+ conductivity in the electrodes and reduce the interfacial resistance between the cathode and electrolyte. After the cathode containing NANOMYTE® SE-50 is fabricated, the solid electrolyte can then be cast directly onto the cathode tape. The cathode and separator layers can then be combined with the anode to complete cell assembly.

Learn More »

About NEI Corporation:

NEI Corporation is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. We produce battery materials through our scalable and economical solid state synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, give us a call or email us.

, ,

NEI introduces durable, anti-fog coating – NANOMYTE® SAF-100


April 26, 2016

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced an optical grade anti-fog coating, NANOMYTE® SAF-100, with durable anti-fog performance and excellent water resistance. The coating passes EN 168 for Mist Retardant Anti-fog Coatings and also exhibits anti-frost properties. Further, the anti-fog properties are retained after repeated washing with soap and water. The coating also has excellent mechanical stability, with a pencil hardness of HB.

SAF-100

NANOMYTE® SAF-100 coated polycarbonate resists fogging over hot water (Left), and upon being removed from a freezer (right).

Anti-fog coatings generally work by creating a hydrophilic surface where condensed moisture spreads into an even film without forming droplets. These coatings have typically suffered from limited anti-fog performance, insufficient abrasion resistance and poor cleanability. NEI’s SAF-100 coating overcomes these issues and provides excellent abrasion resistance in addition to anti-fog characteristics. The novel coating technology is based on NEI’s patented scratch-resistant transparent coating, commercially known as NANOMYTE® SR-100. The scratch resistant base coating formulation has been modified with unique amphiphilic compounds which are locked into the coating matrix, thereby leading to durable anti-fog performance. The scratch-resistant coating matrix provides a high degree of mechanical stability.

NANOMYTE® SAF-100 is ideally suited for surfaces where prevention of fogging and frosting is needed. The coating may be used on sports goggles, face shields, respirators, outdoor signage, camera heads, environmental enclosures, bathroom mirrors and other applications where fogging needs to be mitigated. The liquid coating solution can be applied by dipping, spraying, roll or flow coating. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

The development of NANOMYTE® SAF-100 has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Additional Information: NANOMYTE® SAF-100 Technical Data Sheet

About NEI Corporation:

NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, contact:

Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

, ,

NEI Expands Self-Healing Line of Coatings and Broadens Patent Portfolio

November 3, 2015

Somerset, New Jersey (USA) – NEI Corporation announced today that it has expanded its NANOMYTE® MEND line of top coats where a physical self-healing phenomenon leads to gap closing and crack sealing. The innovative technology platform is applicable to a broad range of substrates such as metal, wood, and polymers – including those that require maintaining a clear glossy appearance. NANOMYTE® MEND coatings can be healed multiple times at the same defect location, thereby reducing life cycle costs by increasing the service life and reducing maintenance costs of the various substrates to which it is applied.

Healing_MEND2

In response to the need for self-healing required in different environments, four MEND products have been introduced. MEND 1000 is based on US Patent 8,987,352, where a thermally induced physical self-healing phenomenon leads to gap closing and crack sealing. The self-healing coating involves a unique phase-separated morphology that facilitates the delivery of the self-healing agent to the damage site (such as a scratch or crack) thereby restoring the coating appearance & function. The coating can be self-healed by the application of warm air for several seconds with a simple device, such as a household hair dryer. Additionally, the properties of the coating – such as hardness, gloss, and refractive index – can be altered as needed for the specific application. The more recently developed, patent-pending MEND 2000 allows self-healing at near ambient temperature. MEND 3000 is a solvent-borne self-healing coating that can be cured at room temperature. MEND 4000, on the other hand, is a waterborne polyurethane-based, self-healing coating (US Patent 8,664,298). The current series of MEND coatings are based on polyurethane, but the principle is applicable to other coating systems as well – including acrylics and epoxies, as well as UV-curable systems.

MEND_Selection_Guide

Self-healing principles can also be applied to surface treatments of metals. To this end, NEI has developed a series of pretreatments for different metals, where a chemical self-healing mechanism imparts corrosion resistance. The US Patent and Trademark Office has issued a notice of allowance for NEI’s patent on another self-healing coating technology. The allowed claims describe a chemical conversion coating for protecting magnesium alloys from corrosion (NANOMYTE® PT-60). PT-60 mimics the performance of chromate conversion coatings. The nanoscale structure of the magnesium surface allows ions to diffuse on demand to the damage site, forming a barrier that prevents further corrosion. Additionally, PT-60 has been engineered to act as a tie layer that bonds the overlying primer with the metal. Excellent field performance has been observed in select applications.

The NANOMYTE® MENDTM family of coatings complement NEI’s portfolio of Advanced Protective Coatings and Surface Treatments which provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of different substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Download Press Release (pdf) »

 


About NEI Corporation:

NEI Corporation is an applications driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. Founded in 1997, the company manufactures and sells advanced materials products, provides materials development services, and performs contract-based R&D for public and private entities. NEI has built a strong manufacturing and R&D infrastructure that enables rapid transition of concepts to products. The company’s products are backed by a suite of issued and pending patents and sold under the registered trademark NANOMYTE®.

For additional information on our MEND coatings, including product specs & a summary presentation, contact us.