, , ,

Price Increases will go into effect on January 1, 2022

November 1, 2021

Dear Customers,

In recent months we have experienced significant increases in the cost of raw materials and labor, and we are now at a point that we can no longer shoulder the burden by ourselves. Unfortunately, we are not immune to the spike in inflation that all of us have been experiencing.

Starting January 1, 2022, you can expect to see a price increase of up to 6% depending on the type of product or service we offer. Any order placed between now and the end of this year will be honored at the current prices. We sincerely hope you understand the need for the price increase.

We thank you for being a valued customer.

Sincerely,
NEI Corporation

, , ,

NEI Introduces Optically Transparent Hardcoat with UV Protection

June 30, 2021

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced NANOMYTE® UVP-100, an optically transparent coating that provides simultaneous protection from ultraviolet radiation, as well as from scratching and abrasion. A key attribute of the single layer UVP-100 coating is that it is relatively thin, only about 5 – 10 microns thick. The new coating can be used on a wide variety of polymer materials, particularly those that are susceptible to damage by ultraviolet light from the sun. NANOMYTE® UVP-100 complements NEI’s portfolio of functional coatings, which include easy-to-clean, hydrophobic, anti-fog, anti-ice, and abrasion resistant coatings.

UVP-100’s coating composition has a unique chemistry that’s comprised of highly efficient UV-absorbing materials that are incorporated into a hard coat matrix. The figure below shows the UV-Vis spectrum of UVP-100 on glass, as compared to that of an uncoated glass control. 90% of the UV radiation with wavelength <375 nm is essentially blocked with a film approximately 6 µm thick. The coating remains fully transparent and is highly stable to UV radiation. The coating showed no damage (e.g., cracking and delamination) even after 250 hours of continuous exposure to intense UV radiation (0.9 W/m2) at 60°C in QUV accelerated weathering testing.

UV-Vis Spectrum of UVP-100

UV-Vis spectrum of UVP-100 vs. uncoated glass (control)

x

Uncoated polycarbonate plaque (left) vs. NANOMYTE® UVP-100 coated polycarbonate plaque (right) – after exposure to ultraviolet light for the same time period

The development of NANOMYTE® UVP-100 coating is based on NEI’s patented NANOMYTE® SR-100 scratch resistant coating technology, which is being used in a number of commercial applications. Using standard abrasion tests, such as ASTM D-1044 (500-gram load, CS-10F wheel, 1000 cycles), uncoated polycarbonate will generate a measured delta haze of 30 – 35%. Commercially available hard coatings on polycarbonate lead to a delta haze of 2% to 6%. By comparison, NANOMYTE® SR-100 typically generates < 1% delta haze (ASTM D1044), and UVP-100 exhibits a delta haze value under 2%. Additionally, NEI’s UVP-100 coating has excellent chemical resistance, passing the 2-hour test for 0.1N HCl, 0.1N NaOH and xylene (i.e., no damage can be seen after 2 hours exposure to the above chemicals). The coating also has good solvent resistance – displaying no damage after 200 double rubs of MEK on the coating surface.

Application of UVP-100 is easy, using standard coating processes (such as immersion, flow, or spray coating) that require no specialized equipment. NEI also supplies a primer product – NANOMYTE® SR-Primer – which works well with a range of plastics to promote adhesion.

Additional Information: NANOMYTE® UVP-100 Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B) | Request a Quote

Download Press Release (pdf) ↓


About NEI: NEI Corporation is an applications-driven company that utilizes materials science & chemistry to develop and produce Advanced Materials for a broad range of markets. NEI’s line of Protective Coatings provide tailored functionalities, such as hydrophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anticorrosion, and icephobicity.

NEI is most receptive to new applications brought to it by its customers. A typical interaction begins by applying the coating on the customer’s parts and submitting it to the customer for evaluation. Either parts are coated at NEI’s applications laboratory, or the customer procures a sample quantity of liquid coating for in-house application. The implementation process then moves through pilot scale tests and eventual qualification. NEI’s engineers support the development and qualification efforts of its customers every step of the way, including drawing up technical specifications and engaging with third party coating applicators, if necessary.

For more information, give us a call or email us.

, ,

NEI Introduces PFC-free NANOMYTE® SR-200EC

March 23, 2021

Somerset, New Jersey (USA) – NEI Corporation recently introduced NANOMYTE® SR-200EC, a liquid coating product that results in relatively thin, clear coatings with an easy-to-clean functionality. The thermally cured coating is mechanically robust, highly repellent to water and oils, and enhances lubricity, however the key aspect is that the coating is free of fluorinated materials and environmentally sustainable.

NEI’s Easy-to-Clean coatings implement both scratch resistance and non-stick properties to surfaces. Soil and liquids simply slide off the surface of coated components, thereby helping prevent deposits and extending the time between cleanings. The clear coatings can be applied to plastics and metals, as well as glass and ceramics, and are ideally suited for applications in high traffic areas that require frequent cleaning and durability. The Easy-to-Clean line of coatings comes in four different formulations, each with varying temperatures and conditions for curing:

NANOMYTE® SR-200EC is a 2-part coating and is sold in ready-to-mix liter and gallon kit quantities. It can be applied on plastics (such as polycarbonate, PMMA, PET, polyurethane, & epoxy) as well as metals (such as stainless steel, aluminum, titanium, brass and chrome). While it is recommended to be applied to a thickness of a few microns, it can also be applied thinner – much less than one micron.

Additional Information: Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B)


About NEI Corporation: NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI’s NANOMYTE® line of Protective Coatings provide tailored functionalities, such as hydrophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anticorrosion, and icephobicity. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

For more information, give us a call or email us.

, ,

NEI Introduces Fast-cure Anti-fog Coating

August 19, 2020

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced NANOMYTE® SAF-200, a fast cure, durable anti-fog coating with excellent water resistance. The development of the new coating has come about as a result of incorporating years of experience in tailoring the chemistry of coatings to meet customer needs. SAF-200 is amenable to spray, dip, flow, roll, and gravure coating processes, and can be cured within 2 to 5 minutes at a temperature range of 80 – 120 °C.

Anti-fog coatings generally work by creating a hydrophilic surface where condensed moisture spreads into an even film without forming droplets. These coatings have typically suffered from limited anti-fog performance, insufficient abrasion resistance and poor cleanability. NEI’s anti-fog coatings overcome these issues and provide excellent abrasion resistance in addition to anti-fog characteristics. The novel coating technology is based on NEI’s patented scratch-resistant transparent coating, commercially known as NANOMYTE® SR-100. The scratch resistant base coating formulation has been modified with unique amphiphilic compounds which are locked into the coating matrix, thereby leading to durable anti-fog performance. The scratch-resistant coating matrix provides a high degree of mechanical stability.

NANOMYTE® SAF-200 is ideally suited for surfaces where prevention of fogging is needed, such as face shields, respirators, goggles, outdoor signage, camera lenses, environmental enclosures, bathroom mirrors, and other applications where fogging needs to be mitigated. The 2-part liquid coating solution can be applied by dipping, spraying, roll or flow coating. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Additional Information: Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B)

Download Press Release (pdf) ↓


About NEI Corporation: NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, , ,

NEI Case Study Featured in PCI Magazine

From Concept to Implementation:

Anti-ice Coating Technology for the Aerospace Industry

A manufacturer of de-icing systems brought up the idea of combining an active de-icing system with a coating that easily sheds ice. Ice formation on the leading edge of an aircraft is a common aviation danger, playing a key role in several catastrophic accidents over the years that have killed people and destroyed aircrafts. All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermal-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power.  Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. The aspect of reduced power is also relevant for battery powered drones. Applying a passive anti-ice coating that functions synergistically with the active de-icing device is an attractive approach. The advantages are reduced power consumption, improved service life of mechanical components, lighter electronics and extra protection in case of failure of active device.

The challenge presented to the engineers and scientists at NEI Corporation was to develop and demonstrate a coating that exhibits durable anti-ice performance and satisfactory wear and erosion resistance. More importantly, it needed to be practical for retrofitting in-service aircraft as well as be used by OEMs. In order to address the need, NEI developed its NANOMYTE® SuperAiTM coating technology to have the following features:

  • Extremely lubricating surface
  • Superior ice adhesion reduction factor
  • Thin coating (< 1 mil or 25 microns), providing a light weight solution
  • Durable anti-ice performance, suitable for permanent application
  • Room temperature cure
  • Easy application by spraying, dipping, or brushing
Read Full Article

*External link will take you to PCI‘s website / digital magazine


About NEI Corporation:

NEI is an application-driven company that utilizes materials science & chemistry to develop and produce Advanced Materials. NEI offers an array of Functional Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as Easy-to-Clean, Anti-Ice, Self-Healing, Corrosion resistant, Anti-Fog, and Abrasion Resistant.

For more information, give us a call or email us.

, ,

NEI Coating Product Update

NANOMYTE® TC-4001-UVP Offers Protection Against Damage by UV-C Radiation Used to Disinfect Coronavirus

May 6, 2020

Somerset, NJ (USA) – NEI Corporation announced today that its newly developed NANOMYTE® TC-4001-UVP product has been shown to offer protection against damage from short-wavelength ultraviolet radiation. Ultraviolet radiation in the 100nm – 280nm wavelength range, also referred to as UV-C, is increasingly being considered as a means for disinfecting surfaces that large numbers of people are likely to come in contact with, such as parts of transit systems, theme parks, cinema theaters, public restrooms, airports, and other areas of high traffic. The COVID-19 virus has made frequent cleaning of surfaces a top priority for maintenance managers of high traffic areas. However, UV radiation causes significant damage to painted surfaces by creating free radicals that then cause polymer degradation. The NANOMYTE® coating offers protection for surfaces exposed to UV-C radiation.

TC-4001-UVP Spectroscopic Graph

NANOMYTE® TC-4001-UVP Spectroscopic Measurements

NANOMYTE® TC-4001-UVP shows remarkable ability to block UV-C, as evidenced by spectroscopic measurements shown in the adjacent figure. All radiation below 350nm is blocked completely by a film that is only 1/5 mil (5 microns) thick. The transparent coating is a single component formulation designed to protect metals and other surfaces from degrading, preserving their structural integrity and appearance. The hard, dense, and smooth coating is a composite consisting of organic and inorganic phases. It resists scratching and chipping and adheres strongly to bare, pretreated, or painted metal surfaces. A variety of other surfaces may be coated as well, such as plastics and composites. The coating is easily applied by immersion, spraying or brushing, in thicknesses ranging from microns to mils, and is available in glossy or matte finishes.

NEI’s extensive line of functional coatings, which includes NANOMYTE® TC-4001-UVP, is already in commercial use in many industrial, aerospace, consumer goods, wireless communication, and other sectors.

1000 Hours Constant UV Exposure: Polycarbonate in QUV Chamber with UVA 340 Lamps @ 0.9 W/m2

The company’s approach has been to be open and receptive to new applications brought to it by its customers. A typical interaction begins by applying the coating on the customer’s parts for evaluation. Parts are either coated at NEI’s applications laboratory or the customer procures a sample quantity of liquid coating for in-house application. The implementation process then moves through pilot scale tests and eventual qualification. NEI’s engineers support the development and qualification efforts of its customers every step of the way, including drawing up technical specifications and engaging with third party coating applicators, if necessary.

Additional Information: NANOMYTE® TC-4001-UVP Technical Data Sheet (TDS) | Safety Data Sheet (SDS)

View / Download Press Release (pdf) ↓


About NEI Corporation:

NEI is an application-driven company that utilizes materials science & chemistry to develop and produce Advanced Materials. NEI offers an array of Functional Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as Easy-to-Clean, Anti-Ice, Self-Healing, Corrosion resistant, Anti-Fog, and Abrasion Resistant.

For more information, give us a call or email us.

, ,

New Anti-ice System Advances to Next Technology Level

Full-scale Prototype Demonstration of a New Hybrid Technology to Prevent Icing on Aircraft and Drones

January 15, 2020

Somerset, NJ (USA) – Invercon Inc. and NEI Corporation announced today that their newly developed de-icing system was tested successfully at the NASA Glenn Research Center’s Icing Research Tunnel. The test was witnessed by engineers and scientists at the Research Center, as well as from the industry. The Invercon-NEI team met the objective of demonstrating a low power anti-ice system in conjunction with NEI’s NANOMYTE® SuperAi anti-ice coating that prevents ice accretion on the leading edge of an airfoil. The test was performed on a full-size airfoil under simulated in-flight conditions, following nearly two years of development and laboratory testing.

All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermo-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power. Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. Icing presents a particular challenge for commercial and military drones, where ice can build up on the wings and propellers and result in crashes. In fact, the current practice is not to fly drones when icing conditions are predicted. Applying a passive anti-ice coating that functions synergistically with an active de-icing device is an attractive hybrid approach, which the team of NEI and Invercon has now demonstrated on full-scale prototypes.

NEI’s NANOMYTE® SuperAi anti-ice coating is a durable coating, suitable for permanent application. The coating leads to a lubricating surface that drastically reduces the adhesion strength of ice – by as much as 80%, compared to bare polished aluminum. The coating is usually applied by spraying, similar to conventional painting. NANOMYTE® SuperAi coating is available for commercial use.

Figure 1: MQ-1 wing test section installed in the IRT tunnel.

Invercon has developed a new, retrofittable, electro-pneumatic deicing system that combines the most attractive aspects of several existing systems without their associated drawbacks. The Invercon system requires remarkably low power (≤ 2.5 kW), is retrofittable on any airfoil, adds very little weight (~50 lbs), and is durable enough to last the life of the aircraft once retrofitted. Importantly, the system looks, feels, and acts like the original leading edge and can provide millions of maintenance-free deicing cycles. The entire wing test section (Figure 1) was coated with NANOMYTE® SuperAi.

Invercon successfully completed icing tests of the electro-pneumatic deicing system at NASA Glenn’s Icing Research Tunnel (IRT) under a full range of representative icing conditions. The Invercon system was able to provide continuous deicing of the wing section leading edge over all of the test conditions ranging from temperatures of -3°C to -20°C with various liquid water content. Typically, the system allows ice to accrete for about 2 minutes and then completely sheds upper and lower surface ice upon system activation.

The testing at NASA’s IRT, which is the longest running icing facility in the world, has moved the hybrid technology to a readiness level of 6 (i.e., TRL6), which is a scale used by NASA and Department of Defense to gauge the maturity level of a technology.

Both NEI Corporation and INVERCON LLC are grateful for the financial support extended by the Small Business Innovation Research Program from the Air Force and NASA. The SBIR program funds product development efforts that reduce concepts to practice and then to prototypes, thereby reducing technology risk. The successful full-scale demonstration by the team has advanced a new technology to a state of commercial readiness.

View / Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

About Invercon LLC:

Invercon’s mission is to develop advanced technologies that enable revolutionary leaps forward in aircraft performance and safety.  For rotorcraft, these include centrifugally powered, pneumatic actuation systems that can actively trim rotors and de-ice rotor blades using almost no power or weight, resulting in significantly improved performance and safety.  For fixed wing aircraft, Invercon has developed extremely low power deicing solutions using a novel electro-pneumatic actuation approach.

For more information, give us a call or email us.

, , ,

NEI Addresses Unmet Self-Healing Needs for Transparent Polymeric Films Market

June 18, 2019

Somerset, NJ (USA)NEI Corporation announced today that it has successfully demonstrated application of its NANOMYTE® MEND 1000 self-healing coating technology on PET film. The coated film is able to recover from repeated scuffing and scratching after heating to 60°C, typically using hot water or a hair dryer. Self-healing is achieved by a thermally-induced, physical self-healing phenomenon which leads to gap closing and crack sealing. This allows the coating to heal repeatedly at the same defect location, which helps to reduce life cycle costs by increasing the service life of the coated material. NEI’s MEND coatings exploit a unique phase-separated morphology that facilitates delivery of the self-healing agent to the damage site (such as a scratch or crack), thereby restoring the coating appearance & function.

There are numerous applications for polymeric films produced in the roll-to-roll coating industry, including signage, vehicle wraps, interior and exterior wall wraps, and protective overlaminates such as those commonly found on touchscreens or installed over window glass. These films are typically relied upon to protect from physical damage or to reduce the transmission of light while providing heat rejection, features which are in high demand for automotive and architectural glass.

Roll-to-roll processes present unique challenges for coatings in terms of the speed and temperature necessary to achieve a sufficient cure. Line speed requirements will often dictate that curing occur within a period of 1-2 minutes at temperatures around 100°C. To increase the speed of cure to better suit continuous, roll-to-roll processing of coated film, NEI now supplies a catalyst additive which can reduce the dry-to-touch (DTT) time to as little as 1 minute at 100°C (exact time and temperature will depend on wet film thickness and other processing conditions), which has allowed its customers in the roll-to-roll coating industry to successfully process the coating.

NEI supplies three versions of its popular NANOMYTE® MEND self-healing coating products to meet different performance and processing requirements:

  • MEND 1000 – heat cure, 60°C healing temperature
  • MEND 2000 – heat cure, 25°C healing temperature
  • MEND 3000 – ambient cure, 60°C healing temperature

The coatings are supplied as 2 components, Parts A and B, which are mixed before application. Further customization can then be accomplished with the addition of a catalyst to speed up curing and/or a reducer to adjust viscosity. NEI can also supply coating formulations with increased viscosity to meet process requirements. Please refer to the product technical datasheets for further guidance. To enhance light-stability and weatherability, NEI also offers its MEND product line with UVP technology to protect sensitive surfaces by blocking UV light while preserving the coating performance. This feature can be critical for some applications, such as those which may cause yellowing of sensitive polymers. NANOMYTE® UVP coating products have demonstrated their ability to endure a minimum of 1000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure”. The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions.

NANOMYTE® MEND coating products can be applied by a variety of processes, including spraying, dipping and flowing. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

Links to Technical Data Sheets:

Additional Information: Safety Data SheetsMEND Product PageDemonstration Video

View / Download Press Release (pdf) ↓


About NEI Corporation: NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, , ,

The Development of NEI’s Anti-Ice Coating Technology for the Aerospace Industry

A Case Study of NANOMYTE® SuperAi from Concept to Implementation

The leading edge of the wing is where icing occurs

A manufacturer of de-icing systems brought up the idea of combining an active de-icing system with a coating that easily sheds ice. Ice formation on the leading edge of an aircraft is a common aviation danger, playing a key role in several catastrophic accidents over the years that have killed people and destroyed aircrafts. All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermal-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power.  Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. The aspect of reduced power is also relevant for battery powered drones. Applying a passive anti-ice coating that functions synergistically with the active de-icing device is an attractive approach. The advantages are reduced power consumption, improved service life of mechanical components, lighter electronics and extra protection in case of failure of active device.

The challenge presented to the engineers and scientists at NEI Corporation was to develop and demonstrate a coating that exhibits durable anti-ice performance and satisfactory wear and erosion resistance. More importantly, it needed to be practical for retrofitting in-service aircraft as well as be used by OEMs. In order to address the need, NEI developed its NANOMYTE® SuperAiTM coating technology to have the following features:

  • Extremely lubricating surface
  • Superior ice adhesion reduction factor
  • Thin coating (< 1 mil or 25 microns), providing a light weight solution
  • Durable anti-ice performance, suitable for permanent application
  • Room temperature cure
  • Easy application by spraying, dipping, or brushing

The development of the SuperAiTM coating started after numerous discussions with engineers at a major low-power ice protection system manufacturer. They brought to our attention the two basic technical requirements for an anti-ice coating to be applied on their de-icing systems, i.e., lower ice adhesion and durable anti-ice performance. We demonstrated both attributes after extensive experiments in NEI’s laboratory and iterative testing at an icing wind tunnel facility with prototype de-icing devices. The ice adhesion measurements taken at NEI were corroborated by work done at the Penn State Adverse Environment Rotor Test Stand (AERTS) facility, which repeatedly showed an ice adhesion strength as low as ~1.8 psi for the SuperAiTM coated aluminum substrate – this represents an 80% reduction compared to an uncoated polished aluminum substrate (Figure 1). Figure 1 shows a pure adhesive failure when an ice column was pulled off the SuperAiTM coated substrate. In contrast, a cohesive failure of ice is seen for the uncoated aluminum substrate.

Figure 1: Ice adhesion strength and locus of failure of SuperAiTM coated aluminum as compared to those of uncoated polished aluminum

To demonstrate the enhanced de-icing efficiency of a de-icing device with the use of SuperAiTM, coated prototypes of electro-mechanical and thermal-mechanical expulsion de-icing systems were tested in an icing tunnel under simulated in-flight icing conditions at our collaborator’s facility. Figure 2 shows the SuperAiTM coated leading edge being assembled with the thermal-mechanical expulsion de-icing system. We have repeatedly demonstrated that improved de-icing efficiency, along with a 45-70% reduction in power consumption of the active de-icing systems could be achieved with the use of the newly developed anti-ice coating (Figure 3).

Figure 2: Installation of leading edge and thermal-mechanical expulsion de-icing system assembly.

Figure 3: Snapshots taken from recording of icing tunnel test showing complete de-icing on coated leading edge (bottom) and no de-icing on uncoated leading edge (top), at power consumption level 70% lower than that of the nominal power needed for a regular functional uncoated de-icing system.

Abrasion resistance is of great importance for the targeted application. Figure 4 shows that the SuperAi coating was barely scratched at the wear track after 200 cycles of Taber abrasion. Note that the CS-10F Calibrase® wheel used in the test is composed of a binder and abrasive particles such as aluminum oxide and silicon carbide. The testing conditions simulate normal service abrasion and wear. Further, the contact angle at the wear track was measured to be 103° (vs. 105° of fresh unabraded surface), indicating that the hydrophobicity of the surface was minimally affected by the abrasion. The ice adhesion measurement at the wear track showed that the coating remained highly icephobic after 200 cycles of Taber abrasion (Figure 5).

Figure 4:  Optical micrograph taken at the wear track after Taber test showing excellent abrasion resistance of the SuperAiTM coating.

Other important aspects of an anti-ice coating for aircraft include its ability to resist rain erosion, chemical and solvent resistance, resistance to icing-deicing cycles and weatherability. These aspects were investigated with various durability tests. As can be seen in Figure 5, the SuperAiTM coating could survive repeated icing-deicing cycles. There was little change in ice adhesion after immersion in jet fuel, Skydrol® (an aviation hydraulic fluid), and water for an extended period of time. Further, the ice adhesion strength was minimally affected by abrasion, high-pressure power wash and UV-Con exposure.

Figure 5:  Ice adhesion results for SuperAiTM after various durability tests.

In summary, we were able to address an important need in the industry, using a disciplined and focused product development effort. The case study presented here is representative of the application-driven coatings development effort we undertake to address a problem or an opportunity. We work directly with customers and seek to develop, demonstrate, and implement a solution.

For more information, give us a call or email us.


NEI Corporation is extremely mindful of maintaining the confidentiality of its customer’s information, even without a non-disclosure agreement. Specific and sensitive information relating to customers have been withheld.


Download Case Study (pdf) ↓

, ,

NEI’s UV-Protect Technology featured in Coatings World Magazine

September 2018

NEI has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

Read the Complete Article:

https://www.coatingsworld.com/issues/2018-09-01/view_breaking-news/nei-introduces-uv-protect-coating-technology

About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.