, ,

NEI Introduces Three New Battery Materials to its Product Line

June 24, 2020

Somerset, NJ (USA) – NEI Corporation recently introduced three new products, further expanding its product line of Battery Electrode Sheets. The new materials cater to the growing need in the industry for high performance cathode and anode electrodes for lithium and lithium-ion batteries.

NANOMYTE® BE-70E is a cast electrode sheet of Sublimed Sulfur powder. Sulfur cathodes offer a high theoretical capacity of 1,672 mAh/g in a Li-S cell, which is an order of magnitude higher than those of the transition-metal oxide cathodes. The high capacity is based on the conversion reaction of sulfur to form lithium sulfide (Li2S) by reversibly incorporating two electrons per sulfur atom. Li−S cell consists of a lithium metal anode, an organic electrolyte, and a sulfur composite cathode, which leads to a theoretical cell capacity of 1,167 mAh/g. BE-70E has a practical capacity of at least 800 mAh/g. The discharge reaction has an average cell voltage of 2.15 V, resulting in a high theoretical gravimetric energy density of 2,509 Wh/kg at the cell level.

NANOMYTE® BE-150E is a cast electrode sheet of Silicon-Graphite composite powder. Silicon (Si) has attracted great attention due to its remarkably high theoretical specific capacity of ~4200 mAh/g, making it one of the most potential anode materials for advancing high-energy lithium-ion batteries. Si-Graphite composite (Si-C) offers the leverage to improve the electrochemical properties of Si with excellent stability attributed to the surrounding carbon-based matrix and improved electric conductivity network. Si-C tapes showed a nominal capacity of 750 mAh/g at 0.05C (electrode loading, 4 mAh/cm2) and demonstrated excellent cycling stability at 0.2C rate.

NANOMYTE® BE-400E is a cast electrode sheet of Niobium Oxide powder (Nb2O5), which is a new electrode material with pseudocapacitive charge storage being introduced to the market for the first time as a potential anode material. It is capable of exceptionally high rate charge as well as discharge (6 – 10C), with good cycling stability (1,000 – 3,000 cycles) and minimal heat generation during high-rate charge-discharge. The unique architecture of the oxide material enables rapid lithium diffusion on a macro and micro-scale enabling enhanced rate performance.

NEI offers a variety of cathode and anode electrode sheets, suitable for a wide range of Lithium-ion battery applications. Standard electrode sheets are cast single-side on 5″ x 10″ foil current collectors, and are available in ready-to-ship packages of 2, 5, and 10 sheets (per material). For customers with specific needs, tape specifications such as the active material loading, coating thickness, binder type (aqueous/non-aqueous), binder content, or current collector can be modified.

Additional Information: Specification Sheets ¦ Safety Data Sheets

Download Press Release (pdf) ↓

About NEI Corporation: NEI is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. We produce battery materials through our scalable and economical solid state synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, give us a call or email us.

, ,

NEI Coating Product Update

NANOMYTE® TC-4001-UVP Offers Protection Against Damage by UV-C Radiation Used to Disinfect Coronavirus

May 6, 2020

Somerset, NJ (USA) – NEI Corporation announced today that its newly developed NANOMYTE® TC-4001-UVP product has been shown to offer protection against damage from short-wavelength ultraviolet radiation. Ultraviolet radiation in the 100nm – 280nm wavelength range, also referred to as UV-C, is increasingly being considered as a means for disinfecting surfaces that large numbers of people are likely to come in contact with, such as parts of transit systems, theme parks, cinema theaters, public restrooms, airports, and other areas of high traffic. The COVID-19 virus has made frequent cleaning of surfaces a top priority for maintenance managers of high traffic areas. However, UV radiation causes significant damage to painted surfaces by creating free radicals that then cause polymer degradation. The NANOMYTE® coating offers protection for surfaces exposed to UV-C radiation.

TC-4001-UVP Spectroscopic Graph

NANOMYTE® TC-4001-UVP Spectroscopic Measurements

NANOMYTE® TC-4001-UVP shows remarkable ability to block UV-C, as evidenced by spectroscopic measurements shown in the adjacent figure. All radiation below 350nm is blocked completely by a film that is only 1/5 mil (5 microns) thick. The transparent coating is a single component formulation designed to protect metals and other surfaces from degrading, preserving their structural integrity and appearance. The hard, dense, and smooth coating is a composite consisting of organic and inorganic phases. It resists scratching and chipping and adheres strongly to bare, pretreated, or painted metal surfaces. A variety of other surfaces may be coated as well, such as plastics and composites. The coating is easily applied by immersion, spraying or brushing, in thicknesses ranging from microns to mils, and is available in glossy or matte finishes.

NEI’s extensive line of functional coatings, which includes NANOMYTE® TC-4001-UVP, is already in commercial use in many industrial, aerospace, consumer goods, wireless communication, and other sectors.

1000 Hours Constant UV Exposure: Polycarbonate in QUV Chamber with UVA 340 Lamps @ 0.9 W/m2

The company’s approach has been to be open and receptive to new applications brought to it by its customers. A typical interaction begins by applying the coating on the customer’s parts for evaluation. Parts are either coated at NEI’s applications laboratory or the customer procures a sample quantity of liquid coating for in-house application. The implementation process then moves through pilot scale tests and eventual qualification. NEI’s engineers support the development and qualification efforts of its customers every step of the way, including drawing up technical specifications and engaging with third party coating applicators, if necessary.

Additional Information: NANOMYTE® TC-4001-UVP Technical Data Sheet (TDS) | Safety Data Sheet (SDS)

View / Download Press Release (pdf) ↓


About NEI Corporation:

NEI is an application-driven company that utilizes materials science & chemistry to develop and produce Advanced Materials. NEI offers an array of Functional Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as Easy-to-Clean, Anti-Ice, Self-Healing, Corrosion resistant, Anti-Fog, and Abrasion Resistant.

For more information, give us a call or email us.

, ,

New Anti-ice System Advances to Next Technology Level

Full-scale Prototype Demonstration of a New Hybrid Technology to Prevent Icing on Aircraft and Drones

January 15, 2020

Somerset, NJ (USA) – Invercon Inc. and NEI Corporation announced today that their newly developed de-icing system was tested successfully at the NASA Glenn Research Center’s Icing Research Tunnel. The test was witnessed by engineers and scientists at the Research Center, as well as from the industry. The Invercon-NEI team met the objective of demonstrating a low power anti-ice system in conjunction with NEI’s NANOMYTE® SuperAi anti-ice coating that prevents ice accretion on the leading edge of an airfoil. The test was performed on a full-size airfoil under simulated in-flight conditions, following nearly two years of development and laboratory testing.

All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermo-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power. Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. Icing presents a particular challenge for commercial and military drones, where ice can build up on the wings and propellers and result in crashes. In fact, the current practice is not to fly drones when icing conditions are predicted. Applying a passive anti-ice coating that functions synergistically with an active de-icing device is an attractive hybrid approach, which the team of NEI and Invercon has now demonstrated on full-scale prototypes.

NEI’s NANOMYTE® SuperAi anti-ice coating is a durable coating, suitable for permanent application. The coating leads to a lubricating surface that drastically reduces the adhesion strength of ice – by as much as 80%, compared to bare polished aluminum. The coating is usually applied by spraying, similar to conventional painting. NANOMYTE® SuperAi coating is available for commercial use.

Figure 1: MQ-1 wing test section installed in the IRT tunnel.

Invercon has developed a new, retrofittable, electro-pneumatic deicing system that combines the most attractive aspects of several existing systems without their associated drawbacks. The Invercon system requires remarkably low power (≤ 2.5 kW), is retrofittable on any airfoil, adds very little weight (~50 lbs), and is durable enough to last the life of the aircraft once retrofitted. Importantly, the system looks, feels, and acts like the original leading edge and can provide millions of maintenance-free deicing cycles. The entire wing test section (Figure 1) was coated with NANOMYTE® SuperAi.

Invercon successfully completed icing tests of the electro-pneumatic deicing system at NASA Glenn’s Icing Research Tunnel (IRT) under a full range of representative icing conditions. The Invercon system was able to provide continuous deicing of the wing section leading edge over all of the test conditions ranging from temperatures of -3°C to -20°C with various liquid water content. Typically, the system allows ice to accrete for about 2 minutes and then completely sheds upper and lower surface ice upon system activation.

The testing at NASA’s IRT, which is the longest running icing facility in the world, has moved the hybrid technology to a readiness level of 6 (i.e., TRL6), which is a scale used by NASA and Department of Defense to gauge the maturity level of a technology.

Both NEI Corporation and INVERCON LLC are grateful for the financial support extended by the Small Business Innovation Research Program from the Air Force and NASA. The SBIR program funds product development efforts that reduce concepts to practice and then to prototypes, thereby reducing technology risk. The successful full-scale demonstration by the team has advanced a new technology to a state of commercial readiness.

View / Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

About Invercon LLC:

Invercon’s mission is to develop advanced technologies that enable revolutionary leaps forward in aircraft performance and safety.  For rotorcraft, these include centrifugally powered, pneumatic actuation systems that can actively trim rotors and de-ice rotor blades using almost no power or weight, resulting in significantly improved performance and safety.  For fixed wing aircraft, Invercon has developed extremely low power deicing solutions using a novel electro-pneumatic actuation approach.

For more information, give us a call or email us.

, ,

NEI Corporation receives new Patent Allowance

October 8, 2019

Somerset, NJ (USA) – NEI Corporation announced today that the US Patent and Trademark Office (USPTO) has recently issued a notice of allowance to the company on a patent application for producing a new class of energetic, core-shell nanoparticles.

Core-shell nanoparticles with a metal core can be used in various applications, such as energetic, pyrotechnics, joining, medical imaging, liquid hydrocarbon fuels, munitions, and energy storage. However, the presence of an oxide layer on the surface of the core metal nanoparticles can significantly reduce the performance of the core-shell nanoparticles. Consequently, the negative impact of the oxide layer outweighs the benefits of high enthalpy nanoparticles. NEI’s patent is directed at synthesizing a new core-shell nanoparticle structure comprised of a metal core, a metal boride intermediate layer, and an outer metal or metal oxide shell. The key characteristic of this core-shell structure is that it allows the use of both pristine metal, as well as oxygen containing metal particles, whereby the oxide surface layer of the metal particles is transformed into metal boride.

Metal-metal boride-metal based core-shell particles and a method to produce the same

Abstract: A new class of energetic nanoparticles and a method to produce the same. The energetic nanoparticles are differentiated from other metallic energetic nanoparticles by their core-shell nanostructure, including an intermediate boride layer that provides oxidation protection and acts as an active mass. An intermetallic reaction occurs between aluminum and nickel. Aluminum based nanoparticles were used for the examples, but the principle is applicable to other materials as well.

Patent History

Patent number: 10421695
Type: Grant
Filed: Jul 20, 2015
Date of Patent: Sep 24, 2019
Assignee: NEI Corporation (Somerset, NJ)
Inventors: Mohit Jain (East Brunswick, NJ), Biju Mathew (Monroe, NJ)
Primary Examiner: Robert S Cabral
Application Number: 14/803,673

View / Download Full Patent (pdf) ⇓


About NEI Corporation

Founded in 1997, NEI Corporation is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials to create significant performance improvements in manufactured goods. NEI’s products include advanced protective coatings, high performance battery electrode materials, and specialty nanoscale materials for diverse applications. NEI’s state-of-the-art manufacturing and testing facility includes high temperature furnaces with controlled atmospheres, mixing, blending and drying equipment, coaters, particle characterization instruments, corrosion testing equipment, polymer films & coatings characterization, and a Li-ion battery testing laboratory. Learn more »

For more information, give us a call or email us.

, , ,

NEI Addresses Unmet Self-Healing Needs for Transparent Polymeric Films Market

June 18, 2019

Somerset, NJ (USA)NEI Corporation announced today that it has successfully demonstrated application of its NANOMYTE® MEND 1000 self-healing coating technology on PET film. The coated film is able to recover from repeated scuffing and scratching after heating to 60°C, typically using hot water or a hair dryer. Self-healing is achieved by a thermally-induced, physical self-healing phenomenon which leads to gap closing and crack sealing. This allows the coating to heal repeatedly at the same defect location, which helps to reduce life cycle costs by increasing the service life of the coated material. NEI’s MEND coatings exploit a unique phase-separated morphology that facilitates delivery of the self-healing agent to the damage site (such as a scratch or crack), thereby restoring the coating appearance & function.

There are numerous applications for polymeric films produced in the roll-to-roll coating industry, including signage, vehicle wraps, interior and exterior wall wraps, and protective overlaminates such as those commonly found on touchscreens or installed over window glass. These films are typically relied upon to protect from physical damage or to reduce the transmission of light while providing heat rejection, features which are in high demand for automotive and architectural glass.

Roll-to-roll processes present unique challenges for coatings in terms of the speed and temperature necessary to achieve a sufficient cure. Line speed requirements will often dictate that curing occur within a period of 1-2 minutes at temperatures around 100°C. To increase the speed of cure to better suit continuous, roll-to-roll processing of coated film, NEI now supplies a catalyst additive which can reduce the dry-to-touch (DTT) time to as little as 1 minute at 100°C (exact time and temperature will depend on wet film thickness and other processing conditions), which has allowed its customers in the roll-to-roll coating industry to successfully process the coating.

NEI supplies three versions of its popular NANOMYTE® MEND self-healing coating products to meet different performance and processing requirements:

  • MEND 1000 – heat cure, 60°C healing temperature
  • MEND 2000 – heat cure, 25°C healing temperature
  • MEND 3000 – ambient cure, 60°C healing temperature

The coatings are supplied as 2 components, Parts A and B, which are mixed before application. Further customization can then be accomplished with the addition of a catalyst to speed up curing and/or a reducer to adjust viscosity. NEI can also supply coating formulations with increased viscosity to meet process requirements. Please refer to the product technical datasheets for further guidance. To enhance light-stability and weatherability, NEI also offers its MEND product line with UVP technology to protect sensitive surfaces by blocking UV light while preserving the coating performance. This feature can be critical for some applications, such as those which may cause yellowing of sensitive polymers. NANOMYTE® UVP coating products have demonstrated their ability to endure a minimum of 1000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure”. The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions.

NANOMYTE® MEND coating products can be applied by a variety of processes, including spraying, dipping and flowing. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

Links to Technical Data Sheets:

Additional Information: Safety Data SheetsMEND Product PageDemonstration Video

View / Download Press Release (pdf) ↓


About NEI Corporation: NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI introduces NANOMYTE® SE-50, Polymer-Ceramic Composite Electrolyte

May 22, 2018

Somerset, NJ (USA) – NEI Corporation is excited to introduce its latest product: NANOMYTE® SE-50. The solid electrolyte is a hybrid, polymer-ceramic composite material for use in solid state lithium batteries. SE-50 has high Li+ ionic conductivity, is compatible with 5V cathode materials, and provides very low resistance in the cell, making the innovative material unique among available solid electrolytes.

The two key challenges for achieving high performance solid state batteries are the low ionic conductivity of many solid electrolytes and the large impedance posed by the electrode-electrolyte interface. SE-50 has been engineered to address these challenges by having a high Li+ ionic conductivity, combined with low interfacial resistance between the electrode and solid electrolyte. These properties are enabled by the unique elastomeric self-adhesive properties of the solid electrolyte. In addition, SE-50 has excellent electrochemical stability, which allows its use with high voltage cathode materials, such as NMC.

NANOMYTE® SE-50 is used as the separator and is added to the electrode as well, where it can be cast either into a free standing film or directly onto a cathode tape for cell assembly. When fabricating cells, the polymer-ceramic electrolyte is incorporated into the electrode tape in order to confer ionic conductivity to the electrode. This is in contrast to cells using a liquid electrolyte, where the liquid electrolyte molecules can get access to the pores in the electrode. When used in conjunction with traditional binders, such as PVDF, SE-50 serves as a conductive binder to afford Li+ conductivity in the electrodes and reduce the interfacial resistance between the cathode and electrolyte. After the cathode containing NANOMYTE® SE-50 is fabricated, the solid electrolyte can then be cast directly onto the cathode tape. The cathode and separator layers can then be combined with the anode to complete cell assembly.

Learn More »

About NEI Corporation:

NEI Corporation is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. We produce battery materials through our scalable and economical solid state synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, give us a call or email us.

,

NEI Corporation introduces UV-Protect Technology to NANOMYTE® Coating Line

March 7, 2018

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

UVP Technology Brief (pdf)

NANOMYTE® coating products with UVP technology have demonstrated their ability to endure a minimum of 1,000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure.” The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions. The UVP functionality has been incorporated into each coating system without degrading other performance characteristics or ease of application. The cured film is both inherently resistant to the sun’s UV radiation, as well as capable of providing UV protection for the underlying surface. This, for example, allows the NANOMYTE® MEND product line to maintain excellent gloss and appearance in outdoor applications, such as automotive coatings. Polymer and composite materials can be particularly sensitive to the effects of UV exposure, which can have a variety of undesirable effects, beginning at the surface and often spreading throughout the bulk of the material. Surface attack immediately begins to compromise coating adhesion, eventually resulting in cracking and peeling. UV-degraded materials may also change colors, often resulting in the familiar yellowing of plastics and lose mechanical strength, making them prone to failure. UVP coatings block UV radiation, which protects surfaces by preserving coating adhesion and aesthetics, and prevents further penetration of UV light which can compromise the material’s strength and appearance.

Outdoor exposure can present additional challenges for surfaces to resist buildup of dirt, airborne contaminants, corrosion, and even ice. NEI’s line of durable protective topcoats, formulated as one-component, ambient-cure systems for ease of use, now offer UVP technology to extend their performance and shield sensitive surfaces. NANOMYTE® SR-500EC-UVP can protect a wide variety of surfaces from the effects of outdoor exposure, coupled with an easy-to-clean functionality with enhanced weatherability. For surfaces prone to icing, NANOMYTE® SuperAi-UVP not only helps keep surfaces clean, but also enhances their ability to shed ice buildup, all while providing excellent protection from the elements. Both of these coatings can maintain excellent hydrophobicity, with a static water contact angle of 100 – 105°, even after 2,000 hours of QUV exposure, while NANOMYTE® SuperAi-UVP maintains a low ice adhesion value of less than 1 psi after more than 1,000 hours of exposure. NANOMYTE® TC-4001-UVP and TC-5001-UVP have been optimized for metals to form a hard, durable coating with excellent barrier properties to prevent moisture penetration and corrosion.

NEI’s coating products featuring UVP technology can be applied by conventional processes, such as dipping, brushing or spraying. NEI also offers in-house coating services for customer’s parts, as well as coating development services, wherein coating formulations are created to address specific customer requirements. The development of NANOMYTE® UVP functional coatings has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings.

Additional Information:

Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI Announces Allowance of Two New Patents to Its Portfolio of Functional Coatings

February 7, 2017

Somerset, NJ (USA) – NEI Corporation announced today that the US Patent and Trademark Office (USPTO) has recently issued a notice of allowance to the company on two patent applications; one for a durable highly hydrophobic coating and the other for an adhesion promoting surface treatment. These patents complement NEI’s portfolio of patents pertaining to superhydrophobic, self-healing, and abrasion resistant coatings. With the allowance of seven patents, and the introduction of an array of coating products, NEI’s concerted efforts to develop and implement practical, multi-functional coatings have now come to fruition.

There is great interest in functional coatings, for both industrial and consumer applications, where the coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. For example, self-healing coatings autonomously repair damage, hydrophobic coatings are able to vigorously repel water droplets, oleophobic coatings prevent “oil” molecules from sticking to the surface, self-cleaning or easy-to-clean coatings minimize or eliminate the need for chemicals during washing, and adhesion promoter surface treatments enable an ultra-strong bond between the primer and the surface. Commercial products to date have met with limited success because they are not engineered to meet all of the functional performance requirements that an application requires. NEI’s patented and patent-pending technologies address this market need.

The recently allowed patent application describes durable hydrophobic coating compositions that are highly desirable for numerous applications, as they impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. The patented compositions are comprised of functionalized perfluoropolyethers (PFPEs), which are known for their non-stick and lubricating properties. It has been a major technical challenge to incorporate PFPEs into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. The patent claims transparent and homogeneous compositions that overcome the stability and adhesion issues. The compositions result in a micron-thick, durable hydrophobic coating that cannot easily be removed by abrasion, harsh cleaners, or chemicals. The patent is the basis for NEI’s hydrophobic coating products, NANOMYTE® SuperCN and SR-100EC.

The adhesion promoter patent application describes a chromate-free, surface pretreatment composition. The environmentally-friendly, waterborne pretreatment promotes the adhesion between a metal substrate and an overlying paint layer by acting as a “double‐sided bonding agent,” while at the same time improving corrosion resistance. The novel composition comprises organo-functional silanes but functions differently from traditional silane treatments. The composition results in a thin film coating having a graded structure, i.e., an inorganic oxide layer that bonds strongly with steel and a loosely crosslinked top layer containing functional groups that can further crosslink with paint overlay. The new technology is valuable to applicators who paint metal structures, such as bridges, ships, and other steel structures. It is also applicable to industrial painting operations, such as coil and spray coatings. The patented chromate‐free pretreatment for steel, offered commercially as NANOMYTE® PT-20, represents a significant advancement in the state‐of‐the‐art for corrosion resistant technologies.

For a more detailed discussion on the company’s patented coating technologies and applications, please see our Patented Coating Technologies Brief.

Download Press Release (pdf) »

For more information, contact us:
NEI Corporation
+1 (732) 868-3141
Send us a message
###


About NEI Corporation

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, which are sold under the registered trademark NANOMYTE® and are backed by a suite of issued and pending patents. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

, ,

Latest Test Results Confirm Performance of NEI’s Newly Optimized Anti-Ice Coating

October 25, 2016

Somerset, New Jersey (USA) – NEI Corporation announced today that it has enhanced the performance of its anti-ice coating, NANOMYTE® SuperAi, and confirmed its efficacy through rigorous testing under a variety of icing conditions. SuperAi is a nanocomposite coating that imparts anti-ice properties to the underlying substrate. As a consequence of the engineered properties of the anti-ice coating’s formulation, it reduces ice buildup on surfaces, and provides a hard, dense, smooth finish.

Surfaces treated with NANOMYTE® SuperAi exhibit reduced ice adhesion, thereby reducing ice buildup. Precisely calibrated Ice Adhesion measurements showed that SuperAi has an Ice Adhesion Reduction Factor of greater than 5 (relative to a polished metal surface), indicating that NANOMYTE® SuperAi reduces the adhesion of ice by more than 80%, compared to smooth, bare metal and painted surfaces. The performance remains unaltered after repeated icing-deicing cycles, as well as after mechanical abrasion. Further, Icing Wind Tunnel experiments showed that SuperAi allows ice to be removed with minimal force, confirming its usefulness under practical use conditions.

superai_applications

NANOMYTE® SuperAi can be applied to a variety of substrates, including plastic, metal, glass, and ceramic. In some instances, a suitable primer may be required for long term durability of the anti-ice coating. SuperAi is a single component coating that is easily applied by spray or brush. The dry film thickness can be adjusted to be in the range of 5 – 25 microns (1/5th to 1 mil), and only one coat is required to cover the substrate. Current applications include occurrences where ice removal is a challenge (e.g., wind turbine blades, power transmission lines and cables, cellular phone towers, windshields and other glass surfaces in automobiles, aircraft wings, and unmanned aerial vehicles, UAVs). SuperAi also provides corrosion protection, which is an added benefit. The use of SuperAi enhances productivity for the user and provides rapid payback, as well as a good return on investment.

Contact us to obtain detailed test results on NANOMYTE® SuperAi.

Additional Information: NANOMYTE® SuperAi Technical Data Sheet | Safety Data Sheet

For more information, contact:
Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

, ,

NEI introduces durable, anti-fog coating – NANOMYTE® SAF-100


April 26, 2016

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced an optical grade anti-fog coating, NANOMYTE® SAF-100, with durable anti-fog performance and excellent water resistance. The coating passes EN 168 for Mist Retardant Anti-fog Coatings and also exhibits anti-frost properties. Further, the anti-fog properties are retained after repeated washing with soap and water. The coating also has excellent mechanical stability, with a pencil hardness of HB.

SAF-100

NANOMYTE® SAF-100 coated polycarbonate resists fogging over hot water (Left), and upon being removed from a freezer (right).

Anti-fog coatings generally work by creating a hydrophilic surface where condensed moisture spreads into an even film without forming droplets. These coatings have typically suffered from limited anti-fog performance, insufficient abrasion resistance and poor cleanability. NEI’s SAF-100 coating overcomes these issues and provides excellent abrasion resistance in addition to anti-fog characteristics. The novel coating technology is based on NEI’s patented scratch-resistant transparent coating, commercially known as NANOMYTE® SR-100. The scratch resistant base coating formulation has been modified with unique amphiphilic compounds which are locked into the coating matrix, thereby leading to durable anti-fog performance. The scratch-resistant coating matrix provides a high degree of mechanical stability.

NANOMYTE® SAF-100 is ideally suited for surfaces where prevention of fogging and frosting is needed. The coating may be used on sports goggles, face shields, respirators, outdoor signage, camera heads, environmental enclosures, bathroom mirrors and other applications where fogging needs to be mitigated. The liquid coating solution can be applied by dipping, spraying, roll or flow coating. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

The development of NANOMYTE® SAF-100 has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Additional Information: NANOMYTE® SAF-100 Technical Data Sheet

About NEI Corporation:

NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, contact:

Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)