Posts

NANOMYTE® PT-60 Eliminates Physical Spacers using Self-healing Corrosion Protection


May 18, 2015

Somerset, New Jersey (USA) – NEI Corporation issued a product update today for NANOMYTE® PT-60, a patent-pending conversion coating with active corrosion protection functionality. Isolation strategies for fastening steel bolts on magnesium components include the use of aluminum shims and spacers. PT-60, presents an alternative where the cost associated with spacers can be avoided without sacrificing performance. Neutral salt spray testing of PT-60 treated magnesium, with a standard epoxy primer, exhibits better performance than the current practice. Tests show enhanced protection against galvanic corrosion between zinc plated steel bolt and magnesium substrate. Additionally, PT-60 significantly reduces general corrosion. Minimal corrosion build-up at the scribe demonstrates the self-healing corrosion inhibition mechanism at work.

PT-60_PIC1

NANOMYTE® PT-60 is a chromate-free, self-healing conversion coating for magnesium that is a drop-in replacement for chromate. It can be applied as a thin conversion coating that protects the metal from corrosion, or as a pretreatment that improves adhesion with overlying paint. The coating is available in 1 liter, 1 gallon, & 55 gallon quantities.

PT60_SALT_FOG

Technical Information:


About NEI Corporation:
NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistant, impact resistant, ice-phobic, and self-cleaning.


For more information, contact:
Ms. Krista Martin
(732) 868‐3141
sales@neicorporation.com
###

,

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating


December 3, 2014

Somerset, New Jersey (USA): NEI Corporation announced today that it has introduced NANOMYTE® SuperAi – a nanocomposite coating that imparts anti-icing properties to the underlying substrate. The transparent coating also provides a hard, dense and smooth finish. Surfaces treated with SuperAi exhibit reduced ice adhesion, thereby preventing ice buildup. SuperAi can be applied to a variety of substrates, including plastics, metals, glass, and ceramics. In some instances, a suitable primer may be required for maximum adhesion of the anti-ice coating.

NANOMYTE® SuperAi is a single component coating that is easily applied by dip, spray, or brush. Potential applications include occurrences where ice removal is a challenge (e.g., wind turbine blades, power transmission lines and cables, windshields and other glass surfaces in automobiles). The coating also provides durability and additional corrosion protection. The figure below is an example of how SuperAi can eliminate ice buildup on a substrate.

SuperAi

SuperAi is uniquely engineered so that the treated surface becomes highly slippery and hydrophobic, which facilitates the reduction in ice adhesion. Data obtained so far by our customers and collaborators indicate that SuperAi is effective in mitigating buildup under icing conditions. For example, in a simulated industrial trial, ice accretion on coated and uncoated aluminum conductor cables were measured. The outside of one cable was coated with SuperAi. Both coated and uncoated conductors were subjected to icing conditions for two hours under a regulated spray of water and ice solution at fixed time intervals. Ice accumulation was determined by weighing the cables before and after the test. It was established, in multiple test runs, that the ice accretion was reduced to half with application of the coating. Similar results were obtained on sections of a wind turbine. In addition, in-house measurements of ice adhesion strength with a force gauge show that SuperAi reduces the adhesion tendency significantly.

NANOMYTE® SuperAi can be applied on clean surfaces using a commercial high volume, low pressure (HVLP) spray gun. The coating can also be applied using a roller or brush, where coating is done in a cross-pattern; left to right, then up and down as quickly as possible since the coating dries quickly. SuperAi can be cured at room temperature by exposing the coating to ambient conditions for 6 to 8 hours. Accelerated curing is achieved in 1 hour or less at temperatures in the range of 100 – 150°C. NANOMYTE® SuperAi is available in one liter bottles, 5 gallon pails, and 55 gallon drums.


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.


For more information, contact:

Ms. Krista Martin
(732) 868‐3141
sales@neicorporation.com
###

,

NANOMYTE® SuperCN Plus – A New Generation of Durable Superhydrophobic Coatings

March 26, 2014

Somerset, New Jersey – NEI Corporation announced today that it has introduced NANOMYTE® SuperCN Plus – a functionally graded coating that imparts superhydrophobic properties to the underlying substrate while providing greater abrasion resistance compared to existing superhydrophobic coatings. Surfaces treated with SuperCN Plus force liquids to bead up and roll off, shedding water instantly and leaving the surface completely dry. SuperCN Plus can be applied to a variety of substrate materials, including plastics, metals, glass, painted surfaces, and fabrics.

NANOMYTE® SuperCN Plus consists of a hard and abrasion resistant outer layer that transitions to a softer material closer to the substrate. Such a functionally graded coating represents a major advancement in the state of the art and is in sharp contrast to monolithic superhydrophobic coatings that consist of a relatively soft material that is easily abraded or rubbed away.

Both panels above were coated with superhydrophobic coatings and subjected to equal abrasion conditions. The panel on the left (commercial coating) shows abrasion marks, while the panel on the right (SuperCN Plus) shows no visible signs of wear.

Figure 1 – Both panels above were coated with superhydrophobic coatings and subjected to equal abrasion conditions. The panel on the left (conventional off-the-shelf coating) shows abrasion marks, while the panel on the right (SuperCN Plus) shows no visible signs of wear.

Superhydrophobic coatings rely on creating and maintaining a composite of micro and nano-sized surface structures that work together to trap a layer of air that can repel most liquids. Off-the-shelf superhydrophobic coatings tend to have poor durability because they are unable to protect these delicate surface structures from abrasion, resulting in rapid loss of superhydrophobicity. Due to the graded structure, SuperCN Plus maintains its superhydrophobicity and high contact angle even after moderate damage. Additionally, it exhibits good adhesion to the substrate.

Surfaces treated with SuperCN Plus show water contact angles as high as 165°. After moderate abrasion, where traditional superhydrophobic coatings begin to show significant damage and delamination, SuperCN Plus remains intact and has been shown to preserve its superhydrophobicity with contact angles over 158°.

Figure 2 – Water droplets on a metal substrate surface coated with NANOMYTE® SuperCN Plus, showing a high contact angle > 150°.

Figure 2 – Water droplets on a metal substrate surface coated with NANOMYTE® SuperCN Plus, showing a high contact angle > 150°.

Since the superhydrophobic coating is enabled by innovations in both process and materials, NEI is currently offering in-house coating services for industrial applications wherein customers can send parts of any geometry and size. The turnaround time is expected to be no more than 3 – 5 business days. If needed, the modular Super CN Plus coating process can be transferred to the OEM site.

For a video demonstration, view here.

Download Press Release (pdf) »

 


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, contact us.