Posts

, ,

NEI Introduces Fast-cure Anti-fog Coating

August 19, 2020

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced NANOMYTE® SAF-200, a fast cure, durable anti-fog coating with excellent water resistance. The development of the new coating has come about as a result of incorporating years of experience in tailoring the chemistry of coatings to meet customer needs. SAF-200 is amenable to spray, dip, flow, roll, and gravure coating processes, and can be cured within 2 to 5 minutes at a temperature range of 80 – 120 °C.

Anti-fog coatings generally work by creating a hydrophilic surface where condensed moisture spreads into an even film without forming droplets. These coatings have typically suffered from limited anti-fog performance, insufficient abrasion resistance and poor cleanability. NEI’s anti-fog coatings overcome these issues and provide excellent abrasion resistance in addition to anti-fog characteristics. The novel coating technology is based on NEI’s patented scratch-resistant transparent coating, commercially known as NANOMYTE® SR-100. The scratch resistant base coating formulation has been modified with unique amphiphilic compounds which are locked into the coating matrix, thereby leading to durable anti-fog performance. The scratch-resistant coating matrix provides a high degree of mechanical stability.

NANOMYTE® SAF-200 is ideally suited for surfaces where prevention of fogging is needed, such as face shields, respirators, goggles, outdoor signage, camera lenses, environmental enclosures, bathroom mirrors, and other applications where fogging needs to be mitigated. The 2-part liquid coating solution can be applied by dipping, spraying, roll or flow coating. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Additional Information: Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B)

Download Press Release (pdf) ↓


About NEI Corporation: NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI Coating Product Update

NANOMYTE® TC-4001-UVP Offers Protection Against Damage by UV-C Radiation Used to Disinfect Coronavirus

May 6, 2020

Somerset, NJ (USA) – NEI Corporation announced today that its newly developed NANOMYTE® TC-4001-UVP product has been shown to offer protection against damage from short-wavelength ultraviolet radiation. Ultraviolet radiation in the 100nm – 280nm wavelength range, also referred to as UV-C, is increasingly being considered as a means for disinfecting surfaces that large numbers of people are likely to come in contact with, such as parts of transit systems, theme parks, cinema theaters, public restrooms, airports, and other areas of high traffic. The COVID-19 virus has made frequent cleaning of surfaces a top priority for maintenance managers of high traffic areas. However, UV radiation causes significant damage to painted surfaces by creating free radicals that then cause polymer degradation. The NANOMYTE® coating offers protection for surfaces exposed to UV-C radiation.

TC-4001-UVP Spectroscopic Graph

NANOMYTE® TC-4001-UVP Spectroscopic Measurements

NANOMYTE® TC-4001-UVP shows remarkable ability to block UV-C, as evidenced by spectroscopic measurements shown in the adjacent figure. All radiation below 350nm is blocked completely by a film that is only 1/5 mil (5 microns) thick. The transparent coating is a single component formulation designed to protect metals and other surfaces from degrading, preserving their structural integrity and appearance. The hard, dense, and smooth coating is a composite consisting of organic and inorganic phases. It resists scratching and chipping and adheres strongly to bare, pretreated, or painted metal surfaces. A variety of other surfaces may be coated as well, such as plastics and composites. The coating is easily applied by immersion, spraying or brushing, in thicknesses ranging from microns to mils, and is available in glossy or matte finishes.

NEI’s extensive line of functional coatings, which includes NANOMYTE® TC-4001-UVP, is already in commercial use in many industrial, aerospace, consumer goods, wireless communication, and other sectors.

1000 Hours Constant UV Exposure: Polycarbonate in QUV Chamber with UVA 340 Lamps @ 0.9 W/m2

The company’s approach has been to be open and receptive to new applications brought to it by its customers. A typical interaction begins by applying the coating on the customer’s parts for evaluation. Parts are either coated at NEI’s applications laboratory or the customer procures a sample quantity of liquid coating for in-house application. The implementation process then moves through pilot scale tests and eventual qualification. NEI’s engineers support the development and qualification efforts of its customers every step of the way, including drawing up technical specifications and engaging with third party coating applicators, if necessary.

Additional Information: NANOMYTE® TC-4001-UVP Technical Data Sheet (TDS) | Safety Data Sheet (SDS)

View / Download Press Release (pdf) ↓


About NEI Corporation:

NEI is an application-driven company that utilizes materials science & chemistry to develop and produce Advanced Materials. NEI offers an array of Functional Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as Easy-to-Clean, Anti-Ice, Self-Healing, Corrosion resistant, Anti-Fog, and Abrasion Resistant.

For more information, give us a call or email us.

, ,

New Anti-ice System Advances to Next Technology Level

Full-scale Prototype Demonstration of a New Hybrid Technology to Prevent Icing on Aircraft and Drones

January 15, 2020

Somerset, NJ (USA) – Invercon Inc. and NEI Corporation announced today that their newly developed de-icing system was tested successfully at the NASA Glenn Research Center’s Icing Research Tunnel. The test was witnessed by engineers and scientists at the Research Center, as well as from the industry. The Invercon-NEI team met the objective of demonstrating a low power anti-ice system in conjunction with NEI’s NANOMYTE® SuperAi anti-ice coating that prevents ice accretion on the leading edge of an airfoil. The test was performed on a full-size airfoil under simulated in-flight conditions, following nearly two years of development and laboratory testing.

All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermo-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power. Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. Icing presents a particular challenge for commercial and military drones, where ice can build up on the wings and propellers and result in crashes. In fact, the current practice is not to fly drones when icing conditions are predicted. Applying a passive anti-ice coating that functions synergistically with an active de-icing device is an attractive hybrid approach, which the team of NEI and Invercon has now demonstrated on full-scale prototypes.

NEI’s NANOMYTE® SuperAi anti-ice coating is a durable coating, suitable for permanent application. The coating leads to a lubricating surface that drastically reduces the adhesion strength of ice – by as much as 80%, compared to bare polished aluminum. The coating is usually applied by spraying, similar to conventional painting. NANOMYTE® SuperAi coating is available for commercial use.

Figure 1: MQ-1 wing test section installed in the IRT tunnel.

Invercon has developed a new, retrofittable, electro-pneumatic deicing system that combines the most attractive aspects of several existing systems without their associated drawbacks. The Invercon system requires remarkably low power (≤ 2.5 kW), is retrofittable on any airfoil, adds very little weight (~50 lbs), and is durable enough to last the life of the aircraft once retrofitted. Importantly, the system looks, feels, and acts like the original leading edge and can provide millions of maintenance-free deicing cycles. The entire wing test section (Figure 1) was coated with NANOMYTE® SuperAi.

Invercon successfully completed icing tests of the electro-pneumatic deicing system at NASA Glenn’s Icing Research Tunnel (IRT) under a full range of representative icing conditions. The Invercon system was able to provide continuous deicing of the wing section leading edge over all of the test conditions ranging from temperatures of -3°C to -20°C with various liquid water content. Typically, the system allows ice to accrete for about 2 minutes and then completely sheds upper and lower surface ice upon system activation.

The testing at NASA’s IRT, which is the longest running icing facility in the world, has moved the hybrid technology to a readiness level of 6 (i.e., TRL6), which is a scale used by NASA and Department of Defense to gauge the maturity level of a technology.

Both NEI Corporation and INVERCON LLC are grateful for the financial support extended by the Small Business Innovation Research Program from the Air Force and NASA. The SBIR program funds product development efforts that reduce concepts to practice and then to prototypes, thereby reducing technology risk. The successful full-scale demonstration by the team has advanced a new technology to a state of commercial readiness.

View / Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

About Invercon LLC:

Invercon’s mission is to develop advanced technologies that enable revolutionary leaps forward in aircraft performance and safety.  For rotorcraft, these include centrifugally powered, pneumatic actuation systems that can actively trim rotors and de-ice rotor blades using almost no power or weight, resulting in significantly improved performance and safety.  For fixed wing aircraft, Invercon has developed extremely low power deicing solutions using a novel electro-pneumatic actuation approach.

For more information, give us a call or email us.

,

NEI Corporation introduces UV-Protect Technology to NANOMYTE® Coating Line

March 7, 2018

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

UVP Technology Brief (pdf)

NANOMYTE® coating products with UVP technology have demonstrated their ability to endure a minimum of 1,000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure.” The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions. The UVP functionality has been incorporated into each coating system without degrading other performance characteristics or ease of application. The cured film is both inherently resistant to the sun’s UV radiation, as well as capable of providing UV protection for the underlying surface. This, for example, allows the NANOMYTE® MEND product line to maintain excellent gloss and appearance in outdoor applications, such as automotive coatings. Polymer and composite materials can be particularly sensitive to the effects of UV exposure, which can have a variety of undesirable effects, beginning at the surface and often spreading throughout the bulk of the material. Surface attack immediately begins to compromise coating adhesion, eventually resulting in cracking and peeling. UV-degraded materials may also change colors, often resulting in the familiar yellowing of plastics and lose mechanical strength, making them prone to failure. UVP coatings block UV radiation, which protects surfaces by preserving coating adhesion and aesthetics, and prevents further penetration of UV light which can compromise the material’s strength and appearance.

Outdoor exposure can present additional challenges for surfaces to resist buildup of dirt, airborne contaminants, corrosion, and even ice. NEI’s line of durable protective topcoats, formulated as one-component, ambient-cure systems for ease of use, now offer UVP technology to extend their performance and shield sensitive surfaces. NANOMYTE® SR-500EC-UVP can protect a wide variety of surfaces from the effects of outdoor exposure, coupled with an easy-to-clean functionality with enhanced weatherability. For surfaces prone to icing, NANOMYTE® SuperAi-UVP not only helps keep surfaces clean, but also enhances their ability to shed ice buildup, all while providing excellent protection from the elements. Both of these coatings can maintain excellent hydrophobicity, with a static water contact angle of 100 – 105°, even after 2,000 hours of QUV exposure, while NANOMYTE® SuperAi-UVP maintains a low ice adhesion value of less than 1 psi after more than 1,000 hours of exposure. NANOMYTE® TC-4001-UVP and TC-5001-UVP have been optimized for metals to form a hard, durable coating with excellent barrier properties to prevent moisture penetration and corrosion.

NEI’s coating products featuring UVP technology can be applied by conventional processes, such as dipping, brushing or spraying. NEI also offers in-house coating services for customer’s parts, as well as coating development services, wherein coating formulations are created to address specific customer requirements. The development of NANOMYTE® UVP functional coatings has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings.

Additional Information:

Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI Announces Allowance of Two New Patents to Its Portfolio of Functional Coatings

February 7, 2017

Somerset, NJ (USA) – NEI Corporation announced today that the US Patent and Trademark Office (USPTO) has recently issued a notice of allowance to the company on two patent applications; one for a durable highly hydrophobic coating and the other for an adhesion promoting surface treatment. These patents complement NEI’s portfolio of patents pertaining to superhydrophobic, self-healing, and abrasion resistant coatings. With the allowance of seven patents, and the introduction of an array of coating products, NEI’s concerted efforts to develop and implement practical, multi-functional coatings have now come to fruition.

There is great interest in functional coatings, for both industrial and consumer applications, where the coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. For example, self-healing coatings autonomously repair damage, hydrophobic coatings are able to vigorously repel water droplets, oleophobic coatings prevent “oil” molecules from sticking to the surface, self-cleaning or easy-to-clean coatings minimize or eliminate the need for chemicals during washing, and adhesion promoter surface treatments enable an ultra-strong bond between the primer and the surface. Commercial products to date have met with limited success because they are not engineered to meet all of the functional performance requirements that an application requires. NEI’s patented and patent-pending technologies address this market need.

The recently allowed patent application describes durable hydrophobic coating compositions that are highly desirable for numerous applications, as they impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. The patented compositions are comprised of functionalized perfluoropolyethers (PFPEs), which are known for their non-stick and lubricating properties. It has been a major technical challenge to incorporate PFPEs into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. The patent claims transparent and homogeneous compositions that overcome the stability and adhesion issues. The compositions result in a micron-thick, durable hydrophobic coating that cannot easily be removed by abrasion, harsh cleaners, or chemicals. The patent is the basis for NEI’s hydrophobic coating products, NANOMYTE® SuperCN and SR-100EC.

The adhesion promoter patent application describes a chromate-free, surface pretreatment composition. The environmentally-friendly, waterborne pretreatment promotes the adhesion between a metal substrate and an overlying paint layer by acting as a “double‐sided bonding agent,” while at the same time improving corrosion resistance. The novel composition comprises organo-functional silanes but functions differently from traditional silane treatments. The composition results in a thin film coating having a graded structure, i.e., an inorganic oxide layer that bonds strongly with steel and a loosely crosslinked top layer containing functional groups that can further crosslink with paint overlay. The new technology is valuable to applicators who paint metal structures, such as bridges, ships, and other steel structures. It is also applicable to industrial painting operations, such as coil and spray coatings. The patented chromate‐free pretreatment for steel, offered commercially as NANOMYTE® PT-20, represents a significant advancement in the state‐of‐the‐art for corrosion resistant technologies.

For a more detailed discussion on the company’s patented coating technologies and applications, please see our Patented Coating Technologies Brief.

Download Press Release (pdf) »

For more information, contact us:
NEI Corporation
+1 (732) 868-3141
Send us a message
###


About NEI Corporation

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, which are sold under the registered trademark NANOMYTE® and are backed by a suite of issued and pending patents. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

, ,

Latest Test Results Confirm Performance of NEI’s Newly Optimized Anti-Ice Coating

October 25, 2016

Somerset, New Jersey (USA) – NEI Corporation announced today that it has enhanced the performance of its anti-ice coating, NANOMYTE® SuperAi, and confirmed its efficacy through rigorous testing under a variety of icing conditions. SuperAi is a nanocomposite coating that imparts anti-ice properties to the underlying substrate. As a consequence of the engineered properties of the anti-ice coating’s formulation, it reduces ice buildup on surfaces, and provides a hard, dense, smooth finish.

Surfaces treated with NANOMYTE® SuperAi exhibit reduced ice adhesion, thereby reducing ice buildup. Precisely calibrated Ice Adhesion measurements showed that SuperAi has an Ice Adhesion Reduction Factor of greater than 5 (relative to a polished metal surface), indicating that NANOMYTE® SuperAi reduces the adhesion of ice by more than 80%, compared to smooth, bare metal and painted surfaces. The performance remains unaltered after repeated icing-deicing cycles, as well as after mechanical abrasion. Further, Icing Wind Tunnel experiments showed that SuperAi allows ice to be removed with minimal force, confirming its usefulness under practical use conditions.

superai_applications

NANOMYTE® SuperAi can be applied to a variety of substrates, including plastic, metal, glass, and ceramic. In some instances, a suitable primer may be required for long term durability of the anti-ice coating. SuperAi is a single component coating that is easily applied by spray or brush. The dry film thickness can be adjusted to be in the range of 5 – 25 microns (1/5th to 1 mil), and only one coat is required to cover the substrate. Current applications include occurrences where ice removal is a challenge (e.g., wind turbine blades, power transmission lines and cables, cellular phone towers, windshields and other glass surfaces in automobiles, aircraft wings, and unmanned aerial vehicles, UAVs). SuperAi also provides corrosion protection, which is an added benefit. The use of SuperAi enhances productivity for the user and provides rapid payback, as well as a good return on investment.

Contact us to obtain detailed test results on NANOMYTE® SuperAi.

Additional Information: NANOMYTE® SuperAi Technical Data Sheet | Safety Data Sheet

For more information, contact:
Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

, ,

NEI introduces durable, anti-fog coating – NANOMYTE® SAF-100


April 26, 2016

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced an optical grade anti-fog coating, NANOMYTE® SAF-100, with durable anti-fog performance and excellent water resistance. The coating passes EN 168 for Mist Retardant Anti-fog Coatings and also exhibits anti-frost properties. Further, the anti-fog properties are retained after repeated washing with soap and water. The coating also has excellent mechanical stability, with a pencil hardness of HB.

SAF-100

NANOMYTE® SAF-100 coated polycarbonate resists fogging over hot water (Left), and upon being removed from a freezer (right).

Anti-fog coatings generally work by creating a hydrophilic surface where condensed moisture spreads into an even film without forming droplets. These coatings have typically suffered from limited anti-fog performance, insufficient abrasion resistance and poor cleanability. NEI’s SAF-100 coating overcomes these issues and provides excellent abrasion resistance in addition to anti-fog characteristics. The novel coating technology is based on NEI’s patented scratch-resistant transparent coating, commercially known as NANOMYTE® SR-100. The scratch resistant base coating formulation has been modified with unique amphiphilic compounds which are locked into the coating matrix, thereby leading to durable anti-fog performance. The scratch-resistant coating matrix provides a high degree of mechanical stability.

NANOMYTE® SAF-100 is ideally suited for surfaces where prevention of fogging and frosting is needed. The coating may be used on sports goggles, face shields, respirators, outdoor signage, camera heads, environmental enclosures, bathroom mirrors and other applications where fogging needs to be mitigated. The liquid coating solution can be applied by dipping, spraying, roll or flow coating. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

The development of NANOMYTE® SAF-100 has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Additional Information: NANOMYTE® SAF-100 Technical Data Sheet

About NEI Corporation:

NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, contact:

Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

, ,

NEI Releases a Newly Improved Version of NANOMYTE® SuperCN – a Durable, Hydrophobic / Oleophobic Coating


February 29, 2016

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced an improved version of its NANOMYTE® SuperCN coating. NANOMYTE® SuperCN – a micron-thick, transparent, and highly durable hydrophobic / oleophobic coating – was originally developed for promoting dropwise condensation in condensers to enhance heat transfer efficiency. The newly updated version has increased SuperCN’s ability to repel water and oils, with an improved adhesion to substrates, higher abrasion resistance, and better chemical and solvent resistance, all while remaining highly transparent. The SuperCN coating exhibits excellent anti-fingerprinting, anti-fouling, stain-resistant and easy-to-clean properties. The coating does not change the appearance of the substrate to be coated.

NEI’s SuperCN coating is based on a patent-pending composition comprised of sustainable functionalized perfluoropolyethers (PFPEs) that do not contain perfluorooctanoic acid (PFOA). Although PFPEs are known for their non-stick and lubricating properties, it has been a major technical challenge to incorporate them into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. NEI’s SuperCN formulation overcomes this stability issue. Additionally, while PFPE-based, easy-to-clean coatings that are currently on the market generally form very thin (< 100nm) coatings, SuperCN coatings have a thickness of 2-5 microns, thereby creating a more mechanically stable coating that cannot be easily removed by abrasion or harsh cleaners and chemicals.

The contact angles of SuperCN-coated surfaces are 108 – 120° for water and 60 – 70° for hexadecane. The hydrophobicity and oleophobicity are maintained after thousands of rubs against a wool felt abrasion wheel (ASTM D1044). Additionally, the measured Δ Haze is less than 3% on polycarbonate substrates (CS-10F wheels, 500 gram load, 500 cycles). NANOMYTE® SuperCN adheres exceptionally well via covalent bonding with glass, ceramics, and basic metals (such as aluminum, zinc, and tin plate) with a standard industrial cleaning method. For passivated or noble metals – such as stainless steel, chrome, titanium, and copper alloys – NEI has developed a novel and specific surface pretreatment procedure to activate the surface before the application of SuperCN, leading to durable adhesion. Furthermore, the coating can also be applied to plastics (such as polycarbonate, PMMA, PET, polyurethane, and epoxy) with or without the use of a primer depending on the activation state of the substrate. NEI supplies a primer product, NANOMYTE® SR-Primer, which works well with a range of plastics.

The development of SuperCN was spurred by a high number of requests from customers that expressed a need for a relatively thin coating that is highly hydrophobic and oleophobic, but also hard and transparent. SuperCN is easy to use and ideally suited for a variety of commonly used consumer products, such as kitchen appliances, shower heads, hand rails, faucets, dining tables, shower doors, medical devices, optical lenses, and touch screens. The liquid coating solution can be applied by dipping, spraying, roll or flow coating, and is thermally cured at 80 – 150°C (a room temperature cure version is also available). NEI offers NANOMYTE® SuperCN in liter or gallon quantities, or through its in-house coatings service for customer parts. Finally, NEI also provides development services, wherein coating formulations are created to address specific customer requirements.

Additional Information:

About NEI Corporation:

NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, contact:

Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

,

A New Perspective on Coatings and Surface Treatments

NEI Corporation’s Patented Technologies Provide a New Perspective on Coatings and Surface Treatment

Patents1Gains in productivity and efficiency are possible when a coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. This realization has sparked great interest in functional coatings in recent years for applications that traditionally have not used paints or coatings. A good example is the use of anti-ice coatings on power transmission lines. Mitigating ice accumulation will help prevent power outages, which has a tangible and beneficial economic impact. Another example is the use of a surface treatment to increase the efficiency of power generation turbines.

Examples of functionalities of interest for both industrial and consumer applications include:

  • Self-Healing: the coating or surface treatment autonomously repairs damage
  • Hydrophobicity: coated surfaces vigorously repel water droplets
  • Oleophobicity: prevents “oil” molecules from sticking to the surfacePatents2
  • Self-Cleaning / Easy-To-Clean: minimizes or eliminates the need for chemicals during washing

While great strides have been made in academic circles to understand the different surface phenomena of these so called ‘smart coatings’, commercial products to date have met with limited success because they are not engineered to meet all of the functional performance requirements that an application may need. For example, commercially available superhydrophobic coatings repel water droplets, but do not prevent the diffusion of water vapor – minimizing moisture ingress is a critical functionality for most protective coatings.

Patents3More often than not, many of the functionalities mentioned above need to be integrated into a single coating or surface treatment. For example, a transparent coating that resists finger printing also needs to be scratch resistant and durable. A coating that prevents fogging in eyewear and other transparent surfaces must also be durable and resistant to chemicals. Further, in order to meet the cost criteria, application of the coating must be compatible with conventional coating methods such as spray, dip, brush or flow. Over the past few years, NEI Corporation’s concerted efforts to develop and implement practical, multi-functional coatings are now coming to fruition.

Patents4Backed by a bevy of issued and pending patents, NEI has introduced an array of coating products under the registered trade name NANOMYTE®. For example, NANOMYTE® MEND is based on US Patent 8,987,352, where a thermally induced, physical self-healing phenomenon leads to gap closing and crack sealing. The self-healing coating involves a unique phase-separated morphology that facilitates the delivery of the self-healing agent to the damage site (such as a scratch or crack) thereby restoring the coating appearance & function. Utilizing commonly available polymer materials and nanoparticles arranged in a unique morphology to achieve self-healing, MEND offers a practical self-healing solution to common polymer coating systems. In response to the need for waterborne, self-healing coatings for non-metallic substrates, NEI developed a waterborne, polyurethane-based, self-healing coating. NANOMYTE® MEND for wood (US Patent 8,664,298) specifically targets the wood cabinet market. A more recent patent-pending version of MEND, referred to as MEND-RT, allows self-healing at near ambient temperature. It is used as the inter-layer of a coating stack and has been shown to enhance the corrosion resistance of traditional coating systems. The MEND coating platform is based on polyurethane, but the principle can be applied to other coating systems as well.

Patents5Self-healing principles can also be applied to surface treatments of metals, whereby the pretreatments can mimic the performance of chromate conversion coatings. To this end, NEI has developed a series of pretreatments for different metals where a chemical self-healing mechanism imparts corrosion resistance. For example, NANOMYTE® PT-60 is a patent-pending conversion coating for use on magnesium alloys. The nanoscale structure of the surface allows ions to diffuse to the damage site, forming a barrier that prevents further corrosion. In addition, PT-60 has been engineered to act as a tie layer that bonds the overlying primer with the metal, thereby leading to excellent performance in the field. Similarly, NEI’s NANOMYTE® PT-10M provides self-healing protection for aluminum, while patent-pending PT-20 is designed for use on steel, and PT-30 (US Patent 8,741,074) is used on copper alloys.

As previously mentioned, combining multiple functionalities in a coating, such as self-healing and superhydrophobicity, presents new opportunities not available until now. For example, NEI has been issued a patent (US Patent 8,968,459) for a superhydrophobic coating composition that also has a self-healing function similar to that of plant leaves. This self-healing, superhydrophobic coating mimics lotus leaves, which maintain their superhydrophobicity by repairing the damaged surface layer with a continuously-secreting hydrophobic epicuticular wax. Equipped with the ability to repair or renew itself, the novel NEI coating overcomes the durability problem of traditional superhydrophobic coatings.

Patents6Durable hydrophobic coatings are highly desirable for numerous applications as they usually impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. Further desirable properties of such coatings include a high degree of scratch/abrasion resistance, excellent adhesion, and chemical resistance, all of which are critical in maintaining a durable coating. In addressing these needs, NEI’s recently developed NANOMYTE® SuperCN and SR-100EC products are patent-pending transparent coatings with a unique combination of properties, including easy-to-clean and stain-resisting properties, excellent abrasion/scratch resistance, as well as good adhesion with a variety of substrates – including polymers, metals, and ceramics.

Patents7Scratch resistance is a sought-after property for coatings in a variety of applications, such as ophthalmic and sports-wear lenses, automobile and airplane windows. Plastic substrates, such as polycarbonate and acrylic, can scratch easily and lose transparency quickly during daily use and maintenance. Hard and optically transparent coatings for plastic substrates possess a significant market potential. NEI offers a patented (US Patent 9,006,370) transparent, scratch-resistant coating called NANOMYTE® SR-100, which exhibits significantly better abrasion resistance than commercially available, scratch-resistant coating products. A matte version of SR-100 has also been developed and is now commercially available.

Download Coatings Technology Brief (pdf) »

 


About NEI Corporation:

NEI is an application driven company that manufactures and sells Advanced Materials products, provides materials development services, and performs contract-based R&D for public and private entities. NEI’s products, which are sold under the registered trademark NANOMYTE®, are backed by a suite of issued and pending patents. NEI has built a strong manufacturing and R&D infrastructure that enables rapid transition of concepts to products. The company has a 10,000 square foot, state-of-the-art materials manufacturing and testing facility in Somerset, New Jersey, which includes high temperature furnaces with controlled atmospheres, mixing, blending and drying equipment, coaters, particle characterization instruments, corrosion testing equipment, polymer films & coatings characterization, and a Li-ion battery testing laboratory. Since its inception, NEI has partnered with small companies, large multinational corporations, U.S. Defense Laboratories, U.S. National Laboratories, and Universities. The relationships take on different forms, ranging from a strategic partnership to joint development efforts targeted at specific applications.

Contact Us »

 

NANOMYTE® PT-60 Eliminates Physical Spacers using Self-healing Corrosion Protection


May 18, 2015

Somerset, New Jersey (USA) – NEI Corporation issued a product update today for NANOMYTE® PT-60, a patent-pending conversion coating with active corrosion protection functionality. Isolation strategies for fastening steel bolts on magnesium components include the use of aluminum shims and spacers. PT-60, presents an alternative where the cost associated with spacers can be avoided without sacrificing performance. Neutral salt spray testing of PT-60 treated magnesium, with a standard epoxy primer, exhibits better performance than the current practice. Tests show enhanced protection against galvanic corrosion between zinc plated steel bolt and magnesium substrate. Additionally, PT-60 significantly reduces general corrosion. Minimal corrosion build-up at the scribe demonstrates the self-healing corrosion inhibition mechanism at work.

PT-60_PIC1

NANOMYTE® PT-60 is a chromate-free, self-healing conversion coating for magnesium that is a drop-in replacement for chromate. It can be applied as a thin conversion coating that protects the metal from corrosion, or as a pretreatment that improves adhesion with overlying paint. The coating is available in 1 liter, 1 gallon, & 55 gallon quantities.

PT60_SALT_FOG

Technical Information:


About NEI Corporation:
NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistant, impact resistant, ice-phobic, and self-cleaning.


For more information, contact:
Ms. Krista Martin
(732) 868‐3141
sales@neicorporation.com
###