The Development of NEI’s Anti-Ice Coating Technology for the Aerospace Industry
A Case Study of NANOMYTE® SuperAi from Concept to Implementation

The leading edge of the wing is where icing occurs
A manufacturer of de-icing systems brought up the idea of combining an active de-icing system with a coating that easily sheds ice. Ice formation on the leading edge of an aircraft is a common aviation danger, playing a key role in several catastrophic accidents over the years that have killed people and destroyed aircrafts. All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermal-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power. Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. The aspect of reduced power is also relevant for battery powered drones. Applying a passive anti-ice coating that functions synergistically with the active de-icing device is an attractive approach. The advantages are reduced power consumption, improved service life of mechanical components, lighter electronics and extra protection in case of failure of active device.
The challenge presented to the engineers and scientists at NEI Corporation was to develop and demonstrate a coating that exhibits durable anti-ice performance and satisfactory wear and erosion resistance. More importantly, it needed to be practical for retrofitting in-service aircraft as well as be used by OEMs. In order to address the need, NEI developed its NANOMYTE® SuperAiTM coating technology to have the following features:
- Extremely lubricating surface
- Superior ice adhesion reduction factor
- Thin coating (< 1 mil or 25 microns), providing a light weight solution
- Durable anti-ice performance, suitable for permanent application
- Room temperature cure
- Easy application by spraying, dipping, or brushing
The development of the SuperAiTM coating started after numerous discussions with engineers at a major low-power ice protection system manufacturer. They brought to our attention the two basic technical requirements for an anti-ice coating to be applied on their de-icing systems, i.e., lower ice adhesion and durable anti-ice performance. We demonstrated both attributes after extensive experiments in NEI’s laboratory and iterative testing at an icing wind tunnel facility with prototype de-icing devices. The ice adhesion measurements taken at NEI were corroborated by work done at the Penn State Adverse Environment Rotor Test Stand (AERTS) facility, which repeatedly showed an ice adhesion strength as low as ~1.8 psi for the SuperAiTM coated aluminum substrate – this represents an 80% reduction compared to an uncoated polished aluminum substrate (Figure 1). Figure 1 shows a pure adhesive failure when an ice column was pulled off the SuperAiTM coated substrate. In contrast, a cohesive failure of ice is seen for the uncoated aluminum substrate.

Figure 1: Ice adhesion strength and locus of failure of SuperAiTM coated aluminum as compared to those of uncoated polished aluminum
To demonstrate the enhanced de-icing efficiency of a de-icing device with the use of SuperAiTM, coated prototypes of electro-mechanical and thermal-mechanical expulsion de-icing systems were tested in an icing tunnel under simulated in-flight icing conditions at our collaborator’s facility. Figure 2 shows the SuperAiTM coated leading edge being assembled with the thermal-mechanical expulsion de-icing system. We have repeatedly demonstrated that improved de-icing efficiency, along with a 45-70% reduction in power consumption of the active de-icing systems could be achieved with the use of the newly developed anti-ice coating (Figure 3).

Figure 2: Installation of leading edge and thermal-mechanical expulsion de-icing system assembly.

Figure 3: Snapshots taken from recording of icing tunnel test showing complete de-icing on coated leading edge (bottom) and no de-icing on uncoated leading edge (top), at power consumption level 70% lower than that of the nominal power needed for a regular functional uncoated de-icing system.
Abrasion resistance is of great importance for the targeted application. Figure 4 shows that the SuperAi coating was barely scratched at the wear track after 200 cycles of Taber abrasion. Note that the CS-10F Calibrase® wheel used in the test is composed of a binder and abrasive particles such as aluminum oxide and silicon carbide. The testing conditions simulate normal service abrasion and wear. Further, the contact angle at the wear track was measured to be 103° (vs. 105° of fresh unabraded surface), indicating that the hydrophobicity of the surface was minimally affected by the abrasion. The ice adhesion measurement at the wear track showed that the coating remained highly icephobic after 200 cycles of Taber abrasion (Figure 5).

Figure 4: Optical micrograph taken at the wear track after Taber test showing excellent abrasion resistance of the SuperAiTM coating.
Other important aspects of an anti-ice coating for aircraft include its ability to resist rain erosion, chemical and solvent resistance, resistance to icing-deicing cycles and weatherability. These aspects were investigated with various durability tests. As can be seen in Figure 5, the SuperAiTM coating could survive repeated icing-deicing cycles. There was little change in ice adhesion after immersion in jet fuel, Skydrol® (an aviation hydraulic fluid), and water for an extended period of time. Further, the ice adhesion strength was minimally affected by abrasion, high-pressure power wash and UV-Con exposure.

Figure 5: Ice adhesion results for SuperAiTM after various durability tests.
In summary, we were able to address an important need in the industry, using a disciplined and focused product development effort. The case study presented here is representative of the application-driven coatings development effort we undertake to address a problem or an opportunity. We work directly with customers and seek to develop, demonstrate, and implement a solution.
For more information, give us a call or email us.
NEI Corporation is extremely mindful of maintaining the confidentiality of its customer’s information, even without a non-disclosure agreement. Specific and sensitive information relating to customers have been withheld.


The recently allowed patent application describes durable hydrophobic coating compositions that are highly desirable for numerous applications, as they impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. The patented compositions are comprised of functionalized perfluoropolyethers (PFPEs), which are known for their non-stick and lubricating properties. It has been a major technical challenge to incorporate PFPEs into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. The patent claims transparent and homogeneous compositions that overcome the stability and adhesion issues. The compositions result in a micron-thick, durable hydrophobic coating that cannot easily be removed by abrasion, harsh cleaners, or chemicals. The patent is the basis for NEI’s hydrophobic coating products,
Gains in productivity and efficiency are possible when a coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. This realization has sparked great interest in functional coatings in recent years for applications that traditionally have not used paints or coatings. A good example is the use of anti-ice coatings on power transmission lines. Mitigating ice accumulation will help prevent power outages, which has a tangible and beneficial economic impact. Another example is the use of a surface treatment to increase the efficiency of power generation turbines.
While great strides have been made in academic circles to understand the different surface phenomena of these so called ‘smart coatings’, commercial products to date have met with limited success because they are not engineered to meet all of the functional performance requirements that an application may need. For example, commercially available superhydrophobic coatings repel water droplets, but do not prevent the diffusion of water vapor – minimizing moisture ingress is a critical functionality for most protective coatings.
More often than not, many of the functionalities mentioned above need to be integrated into a single coating or surface treatment. For example, a transparent coating that resists finger printing also needs to be scratch resistant and durable. A coating that prevents fogging in eyewear and other transparent surfaces must also be durable and resistant to chemicals. Further, in order to meet the cost criteria, application of the coating must be compatible with conventional coating methods such as spray, dip, brush or flow. Over the past few years, NEI Corporation’s concerted efforts to develop and implement practical, multi-functional coatings are now coming to fruition.
Backed by a bevy of issued and pending patents, NEI has introduced an array of coating products under the registered trade name NANOMYTE®. For example,
Self-healing principles can also be applied to surface treatments of metals, whereby the pretreatments can mimic the performance of chromate conversion coatings. To this end, NEI has developed a series of pretreatments for different metals where a chemical self-healing mechanism imparts corrosion resistance. For example,
Scratch resistance is a sought-after property for coatings in a variety of applications, such as ophthalmic and sports-wear lenses, automobile and airplane windows. Plastic substrates, such as polycarbonate and acrylic, can scratch easily and lose transparency quickly during daily use and maintenance. Hard and optically transparent coatings for plastic substrates possess a significant market potential. NEI offers a patented (US Patent 9,006,370) transparent, scratch-resistant coating called
Adhesion enhancement is usually achieved by using adhesion promoters and surface treatment techniques. A recently allowed NEI patent application on adhesion promoter describes a surface pretreatment composition that is chromate‐free. The environmentally-friendly, waterborne pretreatment promotes adhesion between the metal substrate and overlying paint layer by acting as a “double‐sided bonding agent,” while at the same time improving corrosion resistance. The novel composition comprises organo-functional silanes but functions differently from traditional silane treatment. The composition results in a thin film coating having a graded structure, i.e., an inorganic oxide layer that bonds strongly with steel and a loosely crosslinked top layer containing functional groups that can further crosslink with paint overlay. The new technology has value to applicators who paint metal structures, such as bridges, ships, and other steel structures. It is also applicable to industrial painting operations such as coil and spray coatings. The patented chromate‐free pretreatment for steel, offered commercially as 



Gains in productivity and efficiency are possible when a coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. This realization has sparked great interest in functional coatings in recent years for applications that traditionally have not used paints or coatings. A good example is the use of anti-ice coatings on power transmission lines. Mitigating ice accumulation will help prevent power outages, which has a tangible and beneficial economic impact. Another example is the use of a surface treatment to increase the efficiency of power generation turbines.
More often than not, many of the functionalities mentioned above need to be integrated into a single coating or surface treatment. For example, a transparent coating that resists finger printing also needs to be scratch resistant and durable. A coating that prevents fogging in eyewear and other transparent surfaces must also be durable and resistant to chemicals. Further, in order to meet the cost criteria, application of the coating must be compatible with conventional coating methods such as spray, dip, brush or flow. Over the past few years, NEI Corporation’s concerted efforts to develop and implement practical, multi-functional coatings are now coming to fruition.
Backed by a bevy of issued and pending patents, NEI has introduced an array of coating products under the registered trade name NANOMYTE®. For example,
Self-healing principles can also be applied to surface treatments of metals, whereby the pretreatments can mimic the performance of chromate conversion coatings. To this end, NEI has developed a series of pretreatments for different metals where a chemical self-healing mechanism imparts corrosion resistance. For example,
Durable hydrophobic coatings are highly desirable for numerous applications as they usually impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. Further desirable properties of such coatings include a high degree of scratch/abrasion resistance, excellent adhesion, and chemical resistance, all of which are critical in maintaining a durable coating. In addressing these needs, NEI’s recently developed
Scratch resistance is a sought-after property for coatings in a variety of applications, such as ophthalmic and sports-wear lenses, automobile and airplane windows. Plastic substrates, such as polycarbonate and acrylic, can scratch easily and lose transparency quickly during daily use and maintenance. Hard and optically transparent coatings for plastic substrates possess a significant market potential. NEI offers a patented (US Patent 9,006,370) transparent, scratch-resistant coating called