Posts

, , ,

NEI Addresses Unmet Self-Healing Needs for Transparent Polymeric Films Market

June 18, 2019

Somerset, NJ (USA)NEI Corporation announced today that it has successfully demonstrated application of its NANOMYTE® MEND 1000 self-healing coating technology on PET film. The coated film is able to recover from repeated scuffing and scratching after heating to 60°C, typically using hot water or a hair dryer. Self-healing is achieved by a thermally-induced, physical self-healing phenomenon which leads to gap closing and crack sealing. This allows the coating to heal repeatedly at the same defect location, which helps to reduce life cycle costs by increasing the service life of the coated material. NEI’s MEND coatings exploit a unique phase-separated morphology that facilitates delivery of the self-healing agent to the damage site (such as a scratch or crack), thereby restoring the coating appearance & function.

There are numerous applications for polymeric films produced in the roll-to-roll coating industry, including signage, vehicle wraps, interior and exterior wall wraps, and protective overlaminates such as those commonly found on touchscreens or installed over window glass. These films are typically relied upon to protect from physical damage or to reduce the transmission of light while providing heat rejection, features which are in high demand for automotive and architectural glass.

Roll-to-roll processes present unique challenges for coatings in terms of the speed and temperature necessary to achieve a sufficient cure. Line speed requirements will often dictate that curing occur within a period of 1-2 minutes at temperatures around 100°C. To increase the speed of cure to better suit continuous, roll-to-roll processing of coated film, NEI now supplies a catalyst additive which can reduce the dry-to-touch (DTT) time to as little as 1 minute at 100°C (exact time and temperature will depend on wet film thickness and other processing conditions), which has allowed its customers in the roll-to-roll coating industry to successfully process the coating.

NEI supplies three versions of its popular NANOMYTE® MEND self-healing coating products to meet different performance and processing requirements:

  • MEND 1000 – heat cure, 60°C healing temperature
  • MEND 2000 – heat cure, 25°C healing temperature
  • MEND 3000 – ambient cure, 60°C healing temperature

The coatings are supplied as 2 components, Parts A and B, which are mixed before application. Further customization can then be accomplished with the addition of a catalyst to speed up curing and/or a reducer to adjust viscosity. NEI can also supply coating formulations with increased viscosity to meet process requirements. Please refer to the product technical datasheets for further guidance. To enhance light-stability and weatherability, NEI also offers its MEND product line with UVP technology to protect sensitive surfaces by blocking UV light while preserving the coating performance. This feature can be critical for some applications, such as those which may cause yellowing of sensitive polymers. NANOMYTE® UVP coating products have demonstrated their ability to endure a minimum of 1000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure”. The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions.

NANOMYTE® MEND coating products can be applied by a variety of processes, including spraying, dipping and flowing. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

Links to Technical Data Sheets:

Additional Information: Safety Data SheetsMEND Product PageDemonstration Video

View / Download Press Release (pdf) ↓


About NEI Corporation: NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI’s UV-Protect Technology featured in Coatings World Magazine

September 2018

NEI has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

Read the Complete Article:

https://www.coatingsworld.com/issues/2018-09-01/view_breaking-news/nei-introduces-uv-protect-coating-technology

About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

,

NEI Corporation introduces UV-Protect Technology to NANOMYTE® Coating Line

March 7, 2018

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

UVP Technology Brief (pdf)

NANOMYTE® coating products with UVP technology have demonstrated their ability to endure a minimum of 1,000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure.” The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions. The UVP functionality has been incorporated into each coating system without degrading other performance characteristics or ease of application. The cured film is both inherently resistant to the sun’s UV radiation, as well as capable of providing UV protection for the underlying surface. This, for example, allows the NANOMYTE® MEND product line to maintain excellent gloss and appearance in outdoor applications, such as automotive coatings. Polymer and composite materials can be particularly sensitive to the effects of UV exposure, which can have a variety of undesirable effects, beginning at the surface and often spreading throughout the bulk of the material. Surface attack immediately begins to compromise coating adhesion, eventually resulting in cracking and peeling. UV-degraded materials may also change colors, often resulting in the familiar yellowing of plastics and lose mechanical strength, making them prone to failure. UVP coatings block UV radiation, which protects surfaces by preserving coating adhesion and aesthetics, and prevents further penetration of UV light which can compromise the material’s strength and appearance.

Outdoor exposure can present additional challenges for surfaces to resist buildup of dirt, airborne contaminants, corrosion, and even ice. NEI’s line of durable protective topcoats, formulated as one-component, ambient-cure systems for ease of use, now offer UVP technology to extend their performance and shield sensitive surfaces. NANOMYTE® SR-500EC-UVP can protect a wide variety of surfaces from the effects of outdoor exposure, coupled with an easy-to-clean functionality with enhanced weatherability. For surfaces prone to icing, NANOMYTE® SuperAi-UVP not only helps keep surfaces clean, but also enhances their ability to shed ice buildup, all while providing excellent protection from the elements. Both of these coatings can maintain excellent hydrophobicity, with a static water contact angle of 100 – 105°, even after 2,000 hours of QUV exposure, while NANOMYTE® SuperAi-UVP maintains a low ice adhesion value of less than 1 psi after more than 1,000 hours of exposure. NANOMYTE® TC-4001-UVP and TC-5001-UVP have been optimized for metals to form a hard, durable coating with excellent barrier properties to prevent moisture penetration and corrosion.

NEI’s coating products featuring UVP technology can be applied by conventional processes, such as dipping, brushing or spraying. NEI also offers in-house coating services for customer’s parts, as well as coating development services, wherein coating formulations are created to address specific customer requirements. The development of NANOMYTE® UVP functional coatings has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings.

Additional Information:

Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI Announces Allowance of Two New Patents to Its Portfolio of Functional Coatings

February 7, 2017

Somerset, NJ (USA) – NEI Corporation announced today that the US Patent and Trademark Office (USPTO) has recently issued a notice of allowance to the company on two patent applications; one for a durable highly hydrophobic coating and the other for an adhesion promoting surface treatment. These patents complement NEI’s portfolio of patents pertaining to superhydrophobic, self-healing, and abrasion resistant coatings. With the allowance of seven patents, and the introduction of an array of coating products, NEI’s concerted efforts to develop and implement practical, multi-functional coatings have now come to fruition.

There is great interest in functional coatings, for both industrial and consumer applications, where the coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. For example, self-healing coatings autonomously repair damage, hydrophobic coatings are able to vigorously repel water droplets, oleophobic coatings prevent “oil” molecules from sticking to the surface, self-cleaning or easy-to-clean coatings minimize or eliminate the need for chemicals during washing, and adhesion promoter surface treatments enable an ultra-strong bond between the primer and the surface. Commercial products to date have met with limited success because they are not engineered to meet all of the functional performance requirements that an application requires. NEI’s patented and patent-pending technologies address this market need.

The recently allowed patent application describes durable hydrophobic coating compositions that are highly desirable for numerous applications, as they impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. The patented compositions are comprised of functionalized perfluoropolyethers (PFPEs), which are known for their non-stick and lubricating properties. It has been a major technical challenge to incorporate PFPEs into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. The patent claims transparent and homogeneous compositions that overcome the stability and adhesion issues. The compositions result in a micron-thick, durable hydrophobic coating that cannot easily be removed by abrasion, harsh cleaners, or chemicals. The patent is the basis for NEI’s hydrophobic coating products, NANOMYTE® SuperCN and SR-100EC.

The adhesion promoter patent application describes a chromate-free, surface pretreatment composition. The environmentally-friendly, waterborne pretreatment promotes the adhesion between a metal substrate and an overlying paint layer by acting as a “double‐sided bonding agent,” while at the same time improving corrosion resistance. The novel composition comprises organo-functional silanes but functions differently from traditional silane treatments. The composition results in a thin film coating having a graded structure, i.e., an inorganic oxide layer that bonds strongly with steel and a loosely crosslinked top layer containing functional groups that can further crosslink with paint overlay. The new technology is valuable to applicators who paint metal structures, such as bridges, ships, and other steel structures. It is also applicable to industrial painting operations, such as coil and spray coatings. The patented chromate‐free pretreatment for steel, offered commercially as NANOMYTE® PT-20, represents a significant advancement in the state‐of‐the‐art for corrosion resistant technologies.

For a more detailed discussion on the company’s patented coating technologies and applications, please see our Patented Coating Technologies Brief.

Download Press Release (pdf) »

For more information, contact us:
NEI Corporation
+1 (732) 868-3141
Send us a message
###


About NEI Corporation

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, which are sold under the registered trademark NANOMYTE® and are backed by a suite of issued and pending patents. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

, ,

NEI Expands Self-Healing Line of Coatings and Broadens Patent Portfolio

November 3, 2015

Somerset, New Jersey (USA) – NEI Corporation announced today that it has expanded its NANOMYTE® MEND line of top coats where a physical self-healing phenomenon leads to gap closing and crack sealing. The innovative technology platform is applicable to a broad range of substrates such as metal, wood, and polymers – including those that require maintaining a clear glossy appearance. NANOMYTE® MEND coatings can be healed multiple times at the same defect location, thereby reducing life cycle costs by increasing the service life and reducing maintenance costs of the various substrates to which it is applied.

Healing_MEND2

In response to the need for self-healing required in different environments, four MEND products have been introduced. MEND 1000 is based on US Patent 8,987,352, where a thermally induced physical self-healing phenomenon leads to gap closing and crack sealing. The self-healing coating involves a unique phase-separated morphology that facilitates the delivery of the self-healing agent to the damage site (such as a scratch or crack) thereby restoring the coating appearance & function. The coating can be self-healed by the application of warm air for several seconds with a simple device, such as a household hair dryer. Additionally, the properties of the coating – such as hardness, gloss, and refractive index – can be altered as needed for the specific application. The more recently developed, patent-pending MEND 2000 allows self-healing at near ambient temperature. MEND 3000 is a solvent-borne self-healing coating that can be cured at room temperature. MEND 4000, on the other hand, is a waterborne polyurethane-based, self-healing coating (US Patent 8,664,298). The current series of MEND coatings are based on polyurethane, but the principle is applicable to other coating systems as well – including acrylics and epoxies, as well as UV-curable systems.

MEND_Selection_Guide

Self-healing principles can also be applied to surface treatments of metals. To this end, NEI has developed a series of pretreatments for different metals, where a chemical self-healing mechanism imparts corrosion resistance. The US Patent and Trademark Office has issued a notice of allowance for NEI’s patent on another self-healing coating technology. The allowed claims describe a chemical conversion coating for protecting magnesium alloys from corrosion (NANOMYTE® PT-60). PT-60 mimics the performance of chromate conversion coatings. The nanoscale structure of the magnesium surface allows ions to diffuse on demand to the damage site, forming a barrier that prevents further corrosion. Additionally, PT-60 has been engineered to act as a tie layer that bonds the overlying primer with the metal. Excellent field performance has been observed in select applications.

The NANOMYTE® MENDTM family of coatings complement NEI’s portfolio of Advanced Protective Coatings and Surface Treatments which provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of different substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Download Press Release (pdf) »

 


About NEI Corporation:

NEI Corporation is an applications driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. Founded in 1997, the company manufactures and sells advanced materials products, provides materials development services, and performs contract-based R&D for public and private entities. NEI has built a strong manufacturing and R&D infrastructure that enables rapid transition of concepts to products. The company’s products are backed by a suite of issued and pending patents and sold under the registered trademark NANOMYTE®.

For additional information on our MEND coatings, including product specs & a summary presentation, contact us.

NANOMYTE® PT-60 Eliminates Physical Spacers using Self-healing Corrosion Protection


May 18, 2015

Somerset, New Jersey (USA) – NEI Corporation issued a product update today for NANOMYTE® PT-60, a patent-pending conversion coating with active corrosion protection functionality. Isolation strategies for fastening steel bolts on magnesium components include the use of aluminum shims and spacers. PT-60, presents an alternative where the cost associated with spacers can be avoided without sacrificing performance. Neutral salt spray testing of PT-60 treated magnesium, with a standard epoxy primer, exhibits better performance than the current practice. Tests show enhanced protection against galvanic corrosion between zinc plated steel bolt and magnesium substrate. Additionally, PT-60 significantly reduces general corrosion. Minimal corrosion build-up at the scribe demonstrates the self-healing corrosion inhibition mechanism at work.

PT-60_PIC1

NANOMYTE® PT-60 is a chromate-free, self-healing conversion coating for magnesium that is a drop-in replacement for chromate. It can be applied as a thin conversion coating that protects the metal from corrosion, or as a pretreatment that improves adhesion with overlying paint. The coating is available in 1 liter, 1 gallon, & 55 gallon quantities.

PT60_SALT_FOG

Technical Information:


About NEI Corporation:
NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistant, impact resistant, ice-phobic, and self-cleaning.


For more information, contact:
Ms. Krista Martin
(732) 868‐3141
sales@neicorporation.com
###

,

NEI’s New Coating Technology Provides Self-Healing Protection for Traditional Coating Systems


March 24, 2015

Somerset, New Jersey (USA)NEI Corporation announced today that it has introduced NANOMYTE® MEND-RT, a self-healing, polymer nanocomposite coating for use as an intermediate layer in coating systems on metal substrates. When the coating system is physically damaged, the self-healing intermediate layer repairs the damage autonomously at near ambient conditions, closing and sealing the gap and protecting the metal from exposure to the elements. This new feature of physical gap closing provides an alternative to chemical self-healing observed in chromate coatings. The universal nature of this new technology makes it applicable in any chromate-free coating system where self-healing is desired. This unique feature can lead to preserving the aesthetics of a coated surface or providing active corrosion protection on metal surfaces, without changing the formulation of the conventional coating. The intermediate layer can be easily applied by dip, spray, brush or drawdown methods.

The MEND-RT layer is introduced in a traditional coating system without deteriorating the original properties of the coating stack. The technology is applicable to coatings on both ferrous and non-ferrous metals and alloys, such as magnesium, aluminum, copper, zinc and alloys thereof, and steel. The efficacy of the NANOMYTE® MEND-RT coating was confirmed on aluminum alloys, which are used extensively in the aerospace industry. Two sets of coating systems were applied and compared for corrosion resistance. The first coating stack consisted of a chromate-free corrosion resistant pretreatment, a chromate-free epoxy primer, and a standard polyurethane topcoat. The second stack was identical to the first one, with the additional MEND-RT layer inserted between the primer and topcoat. Corrosion resistance was evaluated using the Salt Spray Test (SST) ASTM B-117 method. Artificial defects were made on the coated panels before exposing them to salt spray. The first set of panels, i.e. without the self-healing inter-layer, exhibited early signs of corrosion with white corrosion buildup in the scribed region. The samples with MEND-RT showed enhanced protection with no signs of corrosion after 1,250 hours of exposure.

MEND-RT_Fig.2

Photographs showing trends in corrosion resistance for Al 2024 and 7075 4” x 6” panels after 1,250 hours in salt spray test – (a) Commercial non-chromate coating system; (b) Commercial non-chromate coating system with NANOMYTE® MEND-RT.

NANOMYTE® MEND-RT is available as a two-part product. Given that different applications utilize a variety of coating systems, NEI can undertake an in-house study to evaluate the efficacy of MEND-RT in the specific coating system used by the customer. If needed, the MEND-RT formulation can be customized to suit the requirements of the application. Alternatively, customers also have the option of purchasing MEND-RT and applying the coating at their facilities or through their vendors.

Additional Technical Information:


About NEI Corporation:
NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistant, impact resistant, ice-phobic, and self-cleaning.


For more information, contact:
Ms. Krista Martin
(732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

,

A New Approach To Using Self-healing Coatings

Utilizing a Self-Healing Coating to Impart Enhanced Corrosion Protection to Metals

A traditional protective coating system on a metal substrate generally consists of a pretreatment, primer, and a topcoat. The base metal is pretreated and primed for enhanced adhesion and corrosion resistance. A topcoat is then applied on the primer. Many of the coatings in use today to inhibit corrosion are “passive” in nature, in that they provide only barrier protection and/or promote adhesion between the metal and overlaying paint. While these are important attributes, passive solutions do not offer the same level of protection as coatings that provide “active” corrosion protection. To date, coatings that repair themselves when damaged are limited to either unconventional chemistries or uncommonly used polymers, which require forming a complex molecular network and are too soft to satisfy the mechanical robustness required in a protective topcoat.

An “active” corrosion protection coating, or self-healing coating, can be categorized into two classes according to their self-healing mechanisms: chemical or physical. The traditional chromate-based corrosion protection coating uses hexavalent chromium either in the pretreatment or the primer, or both, to achieve chemical self-healing. In contrast, NEI’s self-healing coating involves physical gap closing and crack sealing, which has the potential to impart performance that matches that of a chromate-based system. Figure 1 illustrates the coating architecture containing NANOMYTE® MEND-RT, a self-healing intermediate layer between the topcoat and the primer. When the coating is physically damaged, the self-healing intermediate layer physically repairs the damage autonomously, closing and sealing the gap and providing an active physical barrier.

Self-Healing Coating System Architecture – (a) A defect occurs in the coating system; (b) The self-healing coating, MEND-RT, closes the defect and prevents further crack propagation.

Self-Healing Coating System Architecture – (a) A defect occurs in the coating system; (b) The self-healing coating, MEND-RT, closes the defect and prevents further crack propagation.

An obvious advantage with the use of a self-healing intermediate layer as shown in Figure 1 is that the topcoat is a standard topcoat, which satisfies all industrial standards. The main function of NANOMYTE® MEND-RT, the intermediate self-healing layer, is to self-repair damages. By separating the topcoat functions and the self-healing function into two distinct layers, a self-healing capability is added to the conventional coating system. The composition of MEND-RT is such that the adhesion between the primer and the topcoat is preserved. The MEND-RT layer can be introduced in any coating system, without deteriorating the original properties of the coating stack. MEND-RT can be used with any coating system applied on ferrous or non-ferrous metals, such as magnesium, aluminum, copper, zinc and alloys thereof, and steel.

The efficacy of the self-healing intermediate layer, MEND-RT, was verified using the standard accelerated test method. A chromate-free, self-healing coating system was applied on aluminum 2024 and 7075 alloys. Aluminum was selected for this evaluation as it is extensively used with chromate coatings in the aerospace and aircraft industry due to its high strength and light weight. Two sets of coating systems were applied and compared for corrosion resistance. The first coating stack consisted of a chromate-free corrosion resistant pretreatment, a chromate-free epoxy primer, and a standard polyurethane topcoat. The second stack was identical to the first one, but had MEND-RT inserted between the primer and topcoat. Corrosion resistance was evaluated using the Salt Spray Test (SST) ASTM B-117 method. Artificial defects (“X” shaped scribes) were made on the coated panels before exposing them to salt spray. The photographs in Figure 2 show the progression of corrosion on Al 2024 and 7075 coupons after 1,250 hours of SST.

MEND-RT_Fig.2

Photographs showing trends in corrosion resistance for Al 2024 and 7075 4” x 6” panels after 1,250 hours in salt spray test – (a) Commercial non-chromate coating system; (b) Commercial non-Chromate coating system with NANOMYTE® MEND-RT.

The first set of panels, i.e. without the self-healing interlayer, exhibited early signs of corrosion with white corrosion buildup in the scribed region. The samples with MEND-RT showed enhanced protection with no signs of corrosion. Examination under the microscope revealed that the defects in the coating were physically sealed by the MEND-RT coating. In addition, the gap closing occurred at near ambient temperature, without any external heat or other stimuli. This is direct evidence that the introduction of MEND-RT enhances the corrosion resistance of a coating system, leading to a longer lifetime of the coating.

Download White Paper (pdf) »

 


About NEI Corporation

NEI is an application driven company that manufactures and sells Advanced Materials products, provides materials development services, and performs contract-based R&D for public and private entities. NEI’s products, which are sold under the registered trademark NANOMYTE®, are backed by a suite of issued and pending patents. NEI has built a strong manufacturing and R&D infrastructure that enables rapid transition of concepts to products. The company has a 10,000 square foot, state-of-the-art materials manufacturing and testing facility in Somerset, New Jersey, which includes high temperature furnaces with controlled atmospheres, mixing, blending and drying equipment, coaters, particle characterization instruments, corrosion testing equipment, polymer films & coatings characterization, and a Li-ion battery testing laboratory. Since its inception, NEI has partnered with small companies, large multinational corporations, U.S. Defense Laboratories, U.S. National Laboratories, and Universities. The relationships take on different forms, ranging from a strategic partnership to joint development efforts targeted at specific applications.

Contact Us »

 

,

New Self-healing Anti-corrosion Coating for Zinc-Plated & Galvanized Steel

March 11, 2014

Somerset, New Jersey – NEI Corporation recently introduced NANOMYTE® TC‐5001, a nanotechnology-enabled, single component, clear coating that significantly improves the corrosion resistance of zinc‐plated and hot‐dip galvanized (HDG) steel. It is amenable to dipping, brushing, and spray coating. The new coating technology is designed to protect zinc‐plated and galvanized steel surfaces from rusting under severe environmental and operating conditions. Applications of the coating technology include protecting outdoor structures (e.g., electrical grid structures, street lights, and lattice beams), hardware (e.g., rods, pipes, nuts, bolts and screws), automotive components and farming equipment. The dense barrier coating can be used as a standalone coating, as well as in combination with NANOMYTE® PT‐100, a self‐healing conversion coating. In salt‐spray tests (SST, ASTM B117), uncoated zinc‐plated steel bolts exhibited white rust in 24 hours and red rust after 168 hours. In contrast, the NANOMYTE® coating provided significant corrosion protection, even after 504 hours of SST. Typically, TC-5001-coated parts show no white rust even after 1000 hours and no red rust even after 1200 hours. SST can be used in conjunction with field testing and online life predictors for coatings on HDG, as prescribed by the American Galvanizers Association (AGA).

TC_5001_figure

NANOMYTE® TC‐5001 is part of NEI’s expanding portfolio of anti-corrosion coating systems, including pretreatments and topcoats that protect steel, aluminum and magnesium from corrosion. The coatings are economical, easy to use, and provide excellent corrosion resistance compared to state‐of‐the art offerings. “Our thin, single component, clear coating for zinc‐plated and HDG steel represents a significant advancement in the state‐of‐the‐art that could eliminate the need for using primers and topcoats,” said Dr. Ganesh Skandan, CEO at NEI Corporation. “The market focused activities of NEI are a key to serving the needs of customers who require high‐performance anticorrosion coatings. Our goal is to engage customers as partners in developing new corrosion-resistant coating products.”

The NANOMYTE® line of coatings provides an array of advanced protective surface treatments for metal, wood, and polymers. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, anti-ice, and easy-to-clean. In addition, NANOMYTE coatings are versatile and can be modified to introduce color and other features to meet performance and aesthetic requirements. NEI also offers a Materials Analysis, Testing, & Characterization service (MATCH) to help customers attain their materials performance objectives.

About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces.

For more information, contact:
Ms. Krista Martin
NEI Corporation
(732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

NEI Corporation Introduces Self‐Healing Anti‐Corrosion Coating for Zinc‐Plated and Galvanized Steel

July 19, 2012

Somerset, NJ – NEI Corporation introduced today a nanotechnology‐enabled, two‐layer coating that significantly improves the corrosion resistance of zinc‐plated and hot‐dip galvanized (HDG) steel. The NEI coating is a drop‐in replacement for trivalent chromium. The coating process consists of first applying NANOMYTE® PT‐100, a self‐healing conversion coating, followed by NANOMYTE® TC‐5001. The latter is a barrier coating, designed to work synergistically with PT‐100. Both PT‐100 and TC‐5001 are liquid coating formulations that are amenable to dip coating, brushing, and spray coating. The new NANOMYTE coating technology is designed to protect zinc‐plated and galvanized steel surfaces from rusting under severe environmental and operating conditions. In salt‐fog exposure experiments (ASTM B117), NANOMYTE‐coated, zinc‐plated steel panels showed no white rust after 840 hours; no red rust was observed even after 1200 hours. In contrast, non‐coated, zinc‐plated panels exhibited white rust in 24 hours and red rust after 168 hours in the salt‐fog chamber. Salt‐spray testing can be used in conjunction with field testing and online life predictors for coatings on HDG, as prescribed by the American Galvanizers Association (AGA).

The new technology is part of NEI’s efforts to develop corrosion resistant coating systems, including pretreatments, primers and topcoats that protect steel, aluminum and magnesium from corrosion. The coatings are economical, easy to use, and provide excellent corrosion resistance compared to state‐of‐the art offerings. “Our thin, double coat solution for zinc‐plated and HDG steel represents a significant advancement in the state‐of‐the‐art that could eliminate the need for using thicker primers and topcoats,” said Dr. Fred Allen, President of the Anticorrosion Coatings Division at NEI Corporation. “The market focused activities of NEI are a key to serving the needs of customers who require high‐performance anticorrosion coatings. Our goal is to engage customers as partners in developing new corrosion‐resistant coating products.”

About NEI Corporation 

Founded in 1997, NEI Corporation develops, manufactures, and distributes nanoscale materials for a broad range of industrial customers around the world. NEI’s products include advanced protective coatings, high performance battery electrode materials, and specialty nanoscale materials for diverse applications. NEI has created a strong foundation in the emerging field of nanotechnology that has enabled the company to become a leader in selected markets. The company headquarters is based in Somerset, NJ.

View / Download Press Release (pdf)