Posts

,

The Time Is Right to Focus on Developing New Battery Material Chemistries

The Time Is Right to Focus on Developing New Battery Material Chemistries

Key Points:

  • Global push to establish a battery manufacturing infrastructure will provide avenues to implement new Advanced Materials
  • New battery material chemistries, along with innovative manufacturing methods, can lead to low-cost EV batteries with the desired performance and safety features
  • The involvement of stakeholders across the entire value chain, early in the materials development process, can reduce time to market

A Lithium-ion Battery is Only as Good as the Materials in it

In the days when Lithium-ion batteries constituted a fledgling industry, which goes back to the early 1990s, there was just one commercialized cathode chemistry, lithium cobalt oxide (LCO). The cathode is arguably the most important constituent of a battery since all the energy (measured in Wh per kilogram) comes from the cathode. All the other major components – anode, separator, electrolyte, and binder – are enablers and do not contribute to the capacity of the cell. A few years after LCO had been in commercial use, Lithium Nickel Cobalt Aluminum Oxide (NCA) came along. NCA had a structure that was similar in many ways to LCO; the composition allowed NCA to have a higher capacity than LCO on a weight basis. The current state-of-the-art, high-capacity cathode material has manganese in it, in addition to nickel and cobalt (NMC), and there are different grades of NMC, with varying amounts of nickel. It is worth noting that even after thirty years of development, the cathode material structure is not all that different from the original LCO. Over time, we have kept tweaking the cathode chemistry, making incremental improvements. The one exception is Lithium Iron Phosphate (LFP), which has an entirely different crystal structure compared to NMC. After the initial excitement in the late 1990s, and an attempt by companies to commercialize the phosphate chemistry, it was mostly left to languish for a decade until segments of the industry decided to adopt LFP; not for its capacity, but for having the benefit of fewer Electric Vehicle (EV) fires. Additionally, manufacturers and automotive OEMs benefited from the expiration of the original LFP patent.

The anode of a lithium-ion battery has traditionally received lesser attention than the cathode for a few reasons: the capacity of a battery comes from the cathode, and the anode is simply the host to receive the lithium ions coming from the cathode. Graphite, which is the host, is much less expensive than any cathode material and has nearly two times the capacity of the cathode, pound for pound. But graphite weighs less (i.e., it occupies a relatively larger volume). The advent of silicon as an anode has helped in this regard, and these days small amounts of silicon are added to graphite. Still, the state-of-the-art anode is largely comprised of graphite, the same material that was used in the first commercial lithium-ion battery. For sure there have been innovations in processing graphitic materials and enhancements in the capacity utilization, but there has been no fundamental change.

The larger point here is that we have kept grinding away at the same battery chemistry for over three decades now. We never had a lithium battery industry in most parts of the world except Japan, Korea, and later China, which made it difficult to implement new battery material inventions, of which there have been many. Commercial, high-volume manufacturers of both materials and batteries were invariably in Asia, which created a chasm between materials developers and the adopters. But now that is changing, and it is changing rapidly. Every other week there is a new announcement for yet another factory to produce lithium-ion batteries. These factories are presently slated to utilize well proven cathode and anode materials but should provide avenues for adopting new materials down the road.

There is Ample Room for New Battery Material Chemistries in Rechargeable Batteries

The driving force for continuing to advance the field are three-fold: enhance performance (translation: increase the range of an EV); safety (translation: mitigate risk of EV fires); and cost (translation: so the average consumer can afford an EV). Over the past decade, we have advanced the state of the art on all fronts, due in large part to engineering efforts but not so much because of a change in the fundamental battery chemistry.

The driving force for continuing to advance the field are three-fold:

  1. Enhance Performance (to increase the range of an EV)
  2. Safety (to mitigate the risk of EV fires)
  3. Cost (so the average consumer can afford an EV)

Over the past decade, we have advanced the state of the art on all fronts, due in large part to engineering efforts but not so much because of a change in the fundamental battery chemistry.

We have also seen a dramatic reduction in the cost of lithium batteries, at both the cell level and pack level. According to Bloomberg New Energy Forum (BNEF), cell level costs have gone down from over $500/kWh in 2013 to $120/kWh in 2022. The additional cost from packaging the cells into a pack went down by an order of magnitude in the same time period and now accounts for only 20% of the cost of the battery pack. Much of the steep reduction came from economies of scale, with a sharp uptick in both actual and anticipated demand, and companies setting up manufacturing at scale to meet the demand.

Most of the ground-breaking “new battery chemistry” work occurs in university laboratories all over the world. Coming up with and creating fundamentally new materials is perhaps the most challenging aspect of Materials Science and Engineering. Think about it for a second: it is a material that never existed in that form on this planet. The fascinating field of Materials Science and Engineering brings together engineers, physicists, chemists, and sometimes even biologists, as well as scientists with backgrounds in computation and computer simulation. And that is exactly what the Battery Industry needs – teams that create new materials.

There is an opportunity to ‘fundamentally reshape’ the landscape of the rechargeable battery industry, and for the United States it could be an engine of growth for the next couple of decades, just like what the semiconductor industry did for the US economy in the 1990s and 2000s.

Bringing Stakeholders Together Can Shorten Time to Market

At NEI Corporation, we have had the privilege and pleasure to work with many materials innovators and some of the brightest minds in the business. From providing a wide range of off-the-shelf materials that enable our customers’ R&D efforts, to producing specialty and custom materials, we are singularly focused on enabling our customers to commercialize.

Conventional wisdom says that it takes ten to fifteen years for an invention to make its way into a commercial battery. In the past, the concentration of battery manufacturing in one part of the world made the process arduous at the very least, if not impossible. But now, there is an opportunity around the world to shorten the timeframe.

The pathway described below could potentially reduce the time from ‘concept to commercialization’ and allow capital to be effectively deployed toward promising materials. With manufacturing infrastructure in place in all corners of the world, we can nurture new materials technologies where the raw materials are sourced cost effectively. There is a unique processing methodology involved; the material composition is protected by international patent applications, and the new material enables non-traditional cell architectures.

Figure demonstrating proposed pathway for developing new battery material chemistries to reduce time from ‘concept to commercialization.’

We Will Figure This Out

Materials innovation in the early stages tends to be compartmentalized, serial, and at times a random process. Taking a holistic approach early in the innovation phase (i.e., a parallel path to product development that looks at all aspects of the cell, including compatibility, manufacturability, cost, and safety) could bring the invention closer to reality more quickly.

There are a lot of restrictions to bringing new materials to market, even after a promising chemistry has been identified and proven. Reasonably priced raw materials need to be available; the material needs to be amenable to low-cost production processes, it needs to be safe to be handled in a ‘dry room’ (i.e., in the presence of air), and it should not be in the form of very small particles, as it prevents a lot of material from being packed in a small volume (think volumetric energy density kWh/L). Above all, all materials in a cell need to be compatible with each other.

The time is right for us to take on the challenge of fundamentally transforming the rechargeable battery chemistry so that it can deliver on its promise. Whether it is based on lithium, sodium, or magnesium ion rocking-chair principle, a chemical compound that is vastly different from a metal oxide cathode and graphite anode, could make the battery look very different (from the inside)! With the changing dynamics of the industry, we as industry participants have an opportunity to seize the moment.

Download Article (pdf)

About the Author:
Dr. Ganesh Skandan is the CEO of NEI Corporation and earned his Ph.D. in Materials Science and Engineering from Rutgers – The State University of New Jersey. Shortly after his graduate work, he co-founded NEI Corporation in 1997. In 2003, Dr. Skandan was recognized as an outstanding alumnus of the Graduate School at Rutgers University at its 50th anniversary. In 2011, Rutgers University again recognized his accomplishments with a Distinguished Alumni award for Distinction in the Physical Sciences. Dr. Skandan holds more than a dozen patents.

Contact:
400E Apgar Drive • Somerset, NJ 08873 • USA
gskandan@neicorporation.com
+1 (732) 868-3141


About NEI:
Founded in 1997, NEI develops, manufactures, and sells advanced materials for a broad range of industrial customers around the world. The company’s core competencies are in designing, developing, and producing products that meet the specific application needs of its customers. More importantly, NEI is a solutions provider, working closely with customers to produce and implement materials for their applications. NEI’s products, which are sold under the registered trademark NANOMYTE®, are backed by a suite of issued and pending patents. NEI’s products include:  Lithium-ion Battery Materials, Na-ion Battery Materials, Functional & Protective Coatings, and Specialty Nanoparticle-based products. NEI also offers associated materials characterization and testing services.

For more information, give us a call or email us.

,

3DBattery Company and NEI Corporation Receive BIRD Energy Program Grant

September 15, 2020

3DBattery Company and NEI Corporation receive grant from the BIRD Energy Program to take a Systems Approach to Next Generation of High Energy Density Lithium-ion Batteries

NEI Corporation (New Jersey, USA) and 3DBattery Company (headquartered in Israel), announced today that the BIRD Energy program has awarded the companies a $900,000 grant for the integration of an advanced anode material with a water-based electrode deposition process, leading to a new generation of high performance and low-cost Lithium-ion batteries. The eighteen-month project aims to first develop cathode materials that can be used with a water-based ion-conducting polymer binder, followed by pairing with a silicon-based anode. The performance of the new materials and associated processes will be demonstrated at the pouch-cell level.

SEM of coated cathode particles (NEI Corporation)

The grant was awarded by BIRD Energy, a program established by the U.S. Department of Energy and Israel’s Ministry of Energy together with the Israel Innovation Authority. The program is managed by the Israel-U.S. BIRD (Binational Industrial Research and Development) Foundation.

BIRD Energy has a rigorous review process and selects the most technologically meritorious projects along with those that are most likely to commercialize and bring about significant impact. Selected projects address energy challenges and opportunities that are of interest to both countries.

NEI Corporation is a leader in the development, manufacture and supply of specialty lithium-ion battery materials. NEI offers a variety of cathode, anode, and electrolyte materials, with a particular forte in producing specialty materials with compositions and particle morphologies that are not commonplace. In addition, NEI has expertise in producing composite particles that have a surface coating. All NEI products are sold under the tradename NANOMYTE®.

3DBattery Company is a startup company specializing in the design, development, and manufacture of innovative energy storage solutions. The company is bringing a paradigm change in the architecture of a lithium-ion cell. 3DB’s main product is a silicon-based anode (AnoSep®), which presents an economical and scalable solution to increase battery capacity, battery cyclability, and fast charging of at least 6C (10 minutes charge to full capacity). The company has vast experience in ion-conductive polymers, polymer synthesis, water-based slurries, battery electrochemical processes, thin-layer and surface phenomena, and particle coating.

The BIRD Energy funded project will enable NEI and 3DBattery to merge their disparate, yet complementing, technologies and capabilities toward a common goal of advancing the state of the art of Lithium-ion battery technology. The team has adopted a Systems Approach, wherein advances in materials and processing are integrated so as to deliver high performance in practical batteries.

“We are proud to support the project between 3DBattery and NEI Corporation to develop cathode and ion-conductive polymers that will lead to improved lithium ion batteries,” said Dr. Eitan Yudilevich, Executive Director of BIRD Foundation. “The BIRD Foundation will continue to support innovative projects that develop solutions for present and future challenges.” Mr. Erez Schreiber, CEO of 3DBattery Company, believes that cross-border partnership will be a key enabler in advancing the business interests of the company while focusing in technology development in Israel. 

Dr. Ganesh Skandan, CEO of NEI Corporation, said, “This is our first ever program through the BIRD Foundation, and we are excited to be working with 3DBBattery, who has a unique approach to ion-conducting binder materials, as well as anodes.”

3DBattery and NEI Corporation expect to roll out the first generation of their respective anode and cathode products by the end of the first quarter of 2021. The products will be optimized while the production is scaled through the rest of 2021.

Download Press Release (pdf) ↓


About 3DBattery Corporation
3DBattery (3DB) is a startup company based in Israel, specializing in the design, development, and manufacture of innovative energy storage solutions. 3DBattery(3DB) developing the next generation green, low-cost material synthesis and fabrication of high-performance lithium-ion batteries. Delivering high energy, high power, fast charging, and high cycling stability in-conjunction with intrinsically low fire propensity and advanced environmentally friendly fabrication technology. The company addresses all market segments, such as electro-mobility (EV and alike), energy storage (ESS), and specialty industries (like Medical Devices and Hearing Aids).

For more information, contact: contact@3DBattery.co.il | (+972) 54 9992112 | www.3dbattery.co.il

About NEI Corporation
NEI develops, manufactures, and sells advanced materials for a broad range of industrial customers around the world. The company’s core competencies are in designing, developing, and producing products that meet the specific application needs of its customers. More importantly, NEI is a solutions provider, wherein they don’t only produce materials, but also work closely with customers to implement them into their applications. NEI’s products, which are sold under the registered trademark NANOMYTE®, are backed by a suite of issued and pending patents. NEI’s products include: Functional & Protective Coatings, Lithium-ion Battery Materials, and Specialty Nanoparticle-based products.

For more information, contact: sales@neicorporation.com | +1 (732) 868-3141 | www.neicorporation.com

, ,

NEI Introduces Three New Battery Materials to its Product Line

June 24, 2020

Somerset, NJ (USA) – NEI Corporation recently introduced three new products, further expanding its product line of Battery Electrode Sheets. The new materials cater to the growing need in the industry for high performance cathode and anode electrodes for lithium and lithium-ion batteries.

NANOMYTE® BE-70E is a cast electrode sheet of Sublimed Sulfur powder. Sulfur cathodes offer a high theoretical capacity of 1,672 mAh/g in a Li-S cell, which is an order of magnitude higher than those of the transition-metal oxide cathodes. The high capacity is based on the conversion reaction of sulfur to form lithium sulfide (Li2S) by reversibly incorporating two electrons per sulfur atom. Li−S cell consists of a lithium metal anode, an organic electrolyte, and a sulfur composite cathode, which leads to a theoretical cell capacity of 1,167 mAh/g. BE-70E has a practical capacity of at least 800 mAh/g. The discharge reaction has an average cell voltage of 2.15 V, resulting in a high theoretical gravimetric energy density of 2,509 Wh/kg at the cell level.

NANOMYTE® BE-150E is a cast electrode sheet of Silicon-Graphite composite powder. Silicon (Si) has attracted great attention due to its remarkably high theoretical specific capacity of ~4200 mAh/g, making it one of the most potential anode materials for advancing high-energy lithium-ion batteries. Si-Graphite composite (Si-C) offers the leverage to improve the electrochemical properties of Si with excellent stability attributed to the surrounding carbon-based matrix and improved electric conductivity network. Si-C tapes showed a nominal capacity of 750 mAh/g at 0.05C (electrode loading, 4 mAh/cm2) and demonstrated excellent cycling stability at 0.2C rate.

NANOMYTE® BE-400E is a cast electrode sheet of Niobium Oxide powder (Nb2O5), which is a new electrode material with pseudocapacitive charge storage being introduced to the market for the first time as a potential anode material. It is capable of exceptionally high rate charge as well as discharge (6 – 10C), with good cycling stability (1,000 – 3,000 cycles) and minimal heat generation during high-rate charge-discharge. The unique architecture of the oxide material enables rapid lithium diffusion on a macro and micro-scale enabling enhanced rate performance.

NEI offers a variety of cathode and anode electrode sheets, suitable for a wide range of Lithium-ion battery applications. Standard electrode sheets are cast single-side on 5″ x 10″ foil current collectors, and are available in ready-to-ship packages of 2, 5, and 10 sheets (per material). For customers with specific needs, tape specifications such as the active material loading, coating thickness, binder type (aqueous/non-aqueous), binder content, or current collector can be modified.

Additional Information: Specification Sheets ¦ Safety Data Sheets

Download Press Release (pdf) ↓

About NEI Corporation: NEI is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. We produce battery materials through our scalable and economical solid state synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, give us a call or email us.

, ,

NEI Expands NANOMYTE® Lithium Battery Product Line

September 9, 2015

Somerset, New Jersey (USA) – NEI Corporation, a leading developer and manufacturer of specialty cathode, anode, and electrolyte materials for Lithium-ion batteries, has announced an expansion of its NANOMYTE® Lithium Battery Product Line. The new products include:

NEI also offers oxide and sulfide electrolyte powders and dispersions, such as:

Specialty compositions and particle morphologies of your choice can also be custom produced.

About NEI Corporation:
NEI offers cost-effective, comprehensive materials development, characterization, & electrochemical testing services to its customers. As a long, trusted source for materials used in lithium-ion batteries and supercapacitors, we are also well positioned to reproducibly synthesize small and large quantities of custom cathode, anode, and solid electrolyte compositions. We create a custom materials solution to meet your requirements through a structured approach involving specified milestones, and all work is done in a highly confidential manner.

We look forward to serving your battery needs!

For more information, contact:
Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

, ,

NEI Introduces Custom-Produced Solid Electrolyte Materials


June 17, 2015

Somerset, New Jersey (USA) – NEI Corporation, a leading developer and manufacturer of specialty cathode, anode, and electrolyte materials for Lithium-ion batteries, has announced an expansion of its services for producing Custom Solid Electrolyte Materials. Most commercial Lithium-ion batteries usually contain an electrolyte that is dissolved in flammable solvents. The use of a solid electrolyte eliminates the flammability issue associated with currently used liquid electrolytes. Customers can now purchase solid electrolyte materials with the composition of their choice. Whether it is an oxide material (e.g., LATP, LLTO, LNBO or any other mixed metal oxide) or a sulfide material (e.g., LPS, LSPS, or composites of sulfide containing compounds), NEI can produce powders anywhere in the range of small lot quantities to multiple kilograms. Additionally, the primary particle size can be reduced further into the ultrafine or nanoscale regime, if needed.

NEI has also developed processes to combine cathode particles and solid electrolyte materials. For example, in a composite morphology, the cathode and solid electrolyte particles are in intimate contact with each other and evenly distributed throughout the material. Customers can specify the cathode and solid electrolyte compositions of interest, and NEI can custom produce powders with the composite morphology. Similarly, the solid electrolyte material can be deposited as a conformal film on cathode particles. Ionic conductivity measurements indicate that the ionic conductivity of the pristine solid electrolyte is largely preserved when it is combined with the cathode materials (the ionic conductivity of pristine solid electrolyte is 8 x 10-4 S/cm, whereas the ionic conductivity of solid electrolyte combined with a cathode is 5 x 10-4 S/cm). Finally, the composite material can be mixed with an ionically conducting binder and cast as a dense film. By making solid state electrolyte materials available in a more useable form, it is our intent to make it easy for Li-ion battery researchers to develop the next generation all-solid-state Li-ion batteries.

NEI Custom Solid ElectrolytesNEI’s Custom Solid Electrolyte Materials services build upon NEI’s patent-pending, ready-to-cast, solid electrolyte materials. Over the past year, NEI has supplied multi-kilogram quantities of their newly developed solid electrolyte powder, NANOMYTE® SSE-10 (Li10SnP2S12 or LSPS). NANOMYTE® SSE-10, which has been used by a number of scientists and engineers for developing and prototyping “all solid” Lithium batteries, has also been made available in the form of a slurry (dispersion), NANOMYTE® SSE-10D, which can be cast into flexible tapes. SSE-10D is composed of surface-modified LSPS particles dispersed in organic solvent, which can be removed after the tape or film is formed.

CSE_Fig4Post Process Solid Electrolyte and Composite Powder into a Slurry and Tape

NEI Corporation has been a long trusted source for customized cathode and anode materials used in lithium batteries. The company specializes in developing new compositions and particle morphologies, including nanoscale particle engineering. NEI also has an extensive battery research and characterization facility, which includes multi-channel cell testers. The introduction of NEI’s service for custom produced solid electrolytes will provide new capabilities to lithium battery developers and manufacturers to enable practical solid state batteries.

For more information, see our slideshow on Custom Produced Solid Electrolytes »


About NEI Corporation:

NEI Corporation is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. The company produces battery materials through a scalable and economical synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, contact:
Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)

,

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries

September 9, 2014

Somerset, New Jersey (USA) – NEI Corporation (NEI) and PneumatiCoat Technologies (PCT) have initiated a collaboration to develop, produce, and market coated battery materials – cathodes, anodes, and solid electrolytes. The partnership will help serve the needs of customers interested in enhancing the performance of batteries through the use of Atomic Layer Deposition (ALD) coatings of active material particles. Key features of ALD-coated particles include improved cycle life, enhanced safety, and greater stability and abuse tolerance, particularly under higher temperature and voltage operation.

NEI Corporation has been a long trusted source for customized cathode and anode materials used in lithium batteries. The company specializes in developing new compositions and particle morphologies, including nanoscale particle engineering. NEI also has extensive battery research and characterization facility, which includes multi-channel cell testers. PneumatiCoat Technologies is a pioneer in autonomous coating systems that allow for high-rate manufacturing of ALD protected particles used in batteries and related energy storage devices. The ALD platform was originally developed in Europe, and PCT is now facilitating the transition of the ALD platform from slow and expensive to economical, robust and industrially-viable.

The NEI–PCT agreement allows customers access to ALD coatings on a variety of battery material compositions, including mixed metal oxides (Lithium Manganese Nickel Oxide – LMNO, NMC, LMO, NCA); phosphates, silicates, titanates, sulfides, graphite and silicon-based active materials. Customers have the flexibility to not only investigate new compositions and chemistries, but also consider the use of different ALD coatings, both passive and lithium-ion conducting. The NEI–PCT relationship provides customers with access to the technology cost-effectively.

Click here to see what ALD-coated battery materials can do for you (pdf) »

 

Download Press Release (pdf) »

 


About NEI Corporation:

NEI Corporation is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. The company produces battery materials through a scalable and economical synthesis process, which is adaptable to different materials compositions and particle morphologies. NEI’s products are sold under the registered trademark NANOMYTE®.

About PneumatiCoat Technologies LLC:
PneumatiCoat Technologies is the exclusive manufacturer of Atomic Layer Deposition (ALD) systems that operate using the low-cost spatial ALD production process, a must-have for integrating surface-customized materials into differentiated products in a cost-effective manner. The powder-on-demand system uses the principles of lean manufacturing to produce ALD-coated particles and objects. PCT provides services, systems, and products to support product customization and continuous improvement initiatives across a wide array of industries, and its innovative IP portfolio also includes exclusive rights to develop and manufacture ALD-enabled battery materials. PCT uses the trade name PICOSHIELD™.


For more information, contact us.

,

NEI Corporation Initiates Development of Water-based Lithium-ion Batteries

May 20, 2014

Somerset, New Jersey (USA) – NEI Corporation is developing a lithium-ion battery where the electrolytes are dissolved in water instead of an organic solvent. The aqueous-based lithium-ion battery has the potential to eliminate the risks associated with state of the art lithium-ion batteries, where the organic solvents are highly flammable. In the event of a battery overcharge or a short circuit, the organic solvents pose serious safety hazards. A number of cases of lithium batteries catching fire have been reported in recent years. Aqueous-based lithium-ion batteries also have the potential to significantly reduce cost, measured in terms of $/kWh.

Environmentally-friendly, non-flammable, Li-Ion batteries

Environmentally-friendly, non-flammable, Li-Ion batteries

While the concept of a lithium-ion cell using a water-based electrolyte has been known and studied, a major limitation is the narrow electrochemical stability window for water, which restricts the cell voltage. For example, the electrochemical stability window for water is within the range of 0 to 1.25V; electrolysis of water occurs outside this voltage range. In contrast, organic solvent-based electrolytes are stable up to at least 4V. The lower the cell voltage is, the lower the energy density is, and consequently, water-based lithium-ion batteries have had low energy densities. Recently, scientists and engineers at NEI Corporation have developed new materials concepts that can overcome the voltage stability issue of water-based lithium-ion systems. The innovations pertain to the composition and morphology of the materials used in the lithium-ion cell. The aqueous-based technology is being developed with funding from the Environmental Protection Agency’s Small Business Innovation Research (SBIR) Program.

NEI has been a long trusted source for customized cathode and anode materials used in lithium batteries. The company specializes in developing new compositions and particle morphologies, including nanoscale particle engineering and surface modification. NEI’s MATCH service – Materials Analysis, Testing and Characterization – also plays a critical role in assisting new materials development. NEI has an extensive battery characterization and research facility, which includes multi-channel cell testers, as well as conventional and customized electrode material manufacturing capabilities using both solid state and solution-based methods. By offering cost-effective products, comprehensive materials development, characterization, & electrochemical testing services to its customers, NEI is able to accommodate to a variety of customer needs.

NEI Corporation welcomes the opportunity to partner with a battery manufacturer to co-develop, test and qualify the water-based lithium-ion batteries.

Download Press Release (pdf)

 

About NEI Corporation:

NEI Corporation is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. The company produces battery materials through a scalable and economical synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, contact us.