Posts

, ,

New Anti-ice System Advances to Next Technology Level

Full-scale Prototype Demonstration of a New Hybrid Technology to Prevent Icing on Aircraft and Drones

January 15, 2020

Somerset, NJ (USA) – Invercon Inc. and NEI Corporation announced today that their newly developed de-icing system was tested successfully at the NASA Glenn Research Center’s Icing Research Tunnel. The test was witnessed by engineers and scientists at the Research Center, as well as from the industry. The Invercon-NEI team met the objective of demonstrating a low power anti-ice system in conjunction with NEI’s NANOMYTE® SuperAi anti-ice coating that prevents ice accretion on the leading edge of an airfoil. The test was performed on a full-size airfoil under simulated in-flight conditions, following nearly two years of development and laboratory testing.

All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermo-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power. Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. Icing presents a particular challenge for commercial and military drones, where ice can build up on the wings and propellers and result in crashes. In fact, the current practice is not to fly drones when icing conditions are predicted. Applying a passive anti-ice coating that functions synergistically with an active de-icing device is an attractive hybrid approach, which the team of NEI and Invercon has now demonstrated on full-scale prototypes.

NEI’s NANOMYTE® SuperAi anti-ice coating is a durable coating, suitable for permanent application. The coating leads to a lubricating surface that drastically reduces the adhesion strength of ice – by as much as 80%, compared to bare polished aluminum. The coating is usually applied by spraying, similar to conventional painting. NANOMYTE® SuperAi coating is available for commercial use.

Figure 1: MQ-1 wing test section installed in the IRT tunnel.

Invercon has developed a new, retrofittable, electro-pneumatic deicing system that combines the most attractive aspects of several existing systems without their associated drawbacks. The Invercon system requires remarkably low power (≤ 2.5 kW), is retrofittable on any airfoil, adds very little weight (~50 lbs), and is durable enough to last the life of the aircraft once retrofitted. Importantly, the system looks, feels, and acts like the original leading edge and can provide millions of maintenance-free deicing cycles. The entire wing test section (Figure 1) was coated with NANOMYTE® SuperAi.

Invercon successfully completed icing tests of the electro-pneumatic deicing system at NASA Glenn’s Icing Research Tunnel (IRT) under a full range of representative icing conditions. The Invercon system was able to provide continuous deicing of the wing section leading edge over all of the test conditions ranging from temperatures of -3°C to -20°C with various liquid water content. Typically, the system allows ice to accrete for about 2 minutes and then completely sheds upper and lower surface ice upon system activation.

The testing at NASA’s IRT, which is the longest running icing facility in the world, has moved the hybrid technology to a readiness level of 6 (i.e., TRL6), which is a scale used by NASA and Department of Defense to gauge the maturity level of a technology.

Both NEI Corporation and INVERCON LLC are grateful for the financial support extended by the Small Business Innovation Research Program from the Air Force and NASA. The SBIR program funds product development efforts that reduce concepts to practice and then to prototypes, thereby reducing technology risk. The successful full-scale demonstration by the team has advanced a new technology to a state of commercial readiness.

View / Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

About Invercon LLC:

Invercon’s mission is to develop advanced technologies that enable revolutionary leaps forward in aircraft performance and safety.  For rotorcraft, these include centrifugally powered, pneumatic actuation systems that can actively trim rotors and de-ice rotor blades using almost no power or weight, resulting in significantly improved performance and safety.  For fixed wing aircraft, Invercon has developed extremely low power deicing solutions using a novel electro-pneumatic actuation approach.

For more information, give us a call or email us.

, ,

NEI’s UV-Protect Technology featured in Coatings World Magazine

September 2018

NEI has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

Read the Complete Article:

https://www.coatingsworld.com/issues/2018-09-01/view_breaking-news/nei-introduces-uv-protect-coating-technology

About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

,

NEI Corporation introduces UV-Protect Technology to NANOMYTE® Coating Line

March 7, 2018

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

UVP Technology Brief (pdf)

NANOMYTE® coating products with UVP technology have demonstrated their ability to endure a minimum of 1,000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure.” The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions. The UVP functionality has been incorporated into each coating system without degrading other performance characteristics or ease of application. The cured film is both inherently resistant to the sun’s UV radiation, as well as capable of providing UV protection for the underlying surface. This, for example, allows the NANOMYTE® MEND product line to maintain excellent gloss and appearance in outdoor applications, such as automotive coatings. Polymer and composite materials can be particularly sensitive to the effects of UV exposure, which can have a variety of undesirable effects, beginning at the surface and often spreading throughout the bulk of the material. Surface attack immediately begins to compromise coating adhesion, eventually resulting in cracking and peeling. UV-degraded materials may also change colors, often resulting in the familiar yellowing of plastics and lose mechanical strength, making them prone to failure. UVP coatings block UV radiation, which protects surfaces by preserving coating adhesion and aesthetics, and prevents further penetration of UV light which can compromise the material’s strength and appearance.

Outdoor exposure can present additional challenges for surfaces to resist buildup of dirt, airborne contaminants, corrosion, and even ice. NEI’s line of durable protective topcoats, formulated as one-component, ambient-cure systems for ease of use, now offer UVP technology to extend their performance and shield sensitive surfaces. NANOMYTE® SR-500EC-UVP can protect a wide variety of surfaces from the effects of outdoor exposure, coupled with an easy-to-clean functionality with enhanced weatherability. For surfaces prone to icing, NANOMYTE® SuperAi-UVP not only helps keep surfaces clean, but also enhances their ability to shed ice buildup, all while providing excellent protection from the elements. Both of these coatings can maintain excellent hydrophobicity, with a static water contact angle of 100 – 105°, even after 2,000 hours of QUV exposure, while NANOMYTE® SuperAi-UVP maintains a low ice adhesion value of less than 1 psi after more than 1,000 hours of exposure. NANOMYTE® TC-4001-UVP and TC-5001-UVP have been optimized for metals to form a hard, durable coating with excellent barrier properties to prevent moisture penetration and corrosion.

NEI’s coating products featuring UVP technology can be applied by conventional processes, such as dipping, brushing or spraying. NEI also offers in-house coating services for customer’s parts, as well as coating development services, wherein coating formulations are created to address specific customer requirements. The development of NANOMYTE® UVP functional coatings has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings.

Additional Information:

Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI Announces Allowance of Two New Patents to Its Portfolio of Functional Coatings

February 7, 2017

Somerset, NJ (USA) – NEI Corporation announced today that the US Patent and Trademark Office (USPTO) has recently issued a notice of allowance to the company on two patent applications; one for a durable highly hydrophobic coating and the other for an adhesion promoting surface treatment. These patents complement NEI’s portfolio of patents pertaining to superhydrophobic, self-healing, and abrasion resistant coatings. With the allowance of seven patents, and the introduction of an array of coating products, NEI’s concerted efforts to develop and implement practical, multi-functional coatings have now come to fruition.

There is great interest in functional coatings, for both industrial and consumer applications, where the coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. For example, self-healing coatings autonomously repair damage, hydrophobic coatings are able to vigorously repel water droplets, oleophobic coatings prevent “oil” molecules from sticking to the surface, self-cleaning or easy-to-clean coatings minimize or eliminate the need for chemicals during washing, and adhesion promoter surface treatments enable an ultra-strong bond between the primer and the surface. Commercial products to date have met with limited success because they are not engineered to meet all of the functional performance requirements that an application requires. NEI’s patented and patent-pending technologies address this market need.

The recently allowed patent application describes durable hydrophobic coating compositions that are highly desirable for numerous applications, as they impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. The patented compositions are comprised of functionalized perfluoropolyethers (PFPEs), which are known for their non-stick and lubricating properties. It has been a major technical challenge to incorporate PFPEs into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. The patent claims transparent and homogeneous compositions that overcome the stability and adhesion issues. The compositions result in a micron-thick, durable hydrophobic coating that cannot easily be removed by abrasion, harsh cleaners, or chemicals. The patent is the basis for NEI’s hydrophobic coating products, NANOMYTE® SuperCN and SR-100EC.

The adhesion promoter patent application describes a chromate-free, surface pretreatment composition. The environmentally-friendly, waterborne pretreatment promotes the adhesion between a metal substrate and an overlying paint layer by acting as a “double‐sided bonding agent,” while at the same time improving corrosion resistance. The novel composition comprises organo-functional silanes but functions differently from traditional silane treatments. The composition results in a thin film coating having a graded structure, i.e., an inorganic oxide layer that bonds strongly with steel and a loosely crosslinked top layer containing functional groups that can further crosslink with paint overlay. The new technology is valuable to applicators who paint metal structures, such as bridges, ships, and other steel structures. It is also applicable to industrial painting operations, such as coil and spray coatings. The patented chromate‐free pretreatment for steel, offered commercially as NANOMYTE® PT-20, represents a significant advancement in the state‐of‐the‐art for corrosion resistant technologies.

For a more detailed discussion on the company’s patented coating technologies and applications, please see our Patented Coating Technologies Brief.

Download Press Release (pdf) »

For more information, contact us:
NEI Corporation
+1 (732) 868-3141
Send us a message
###


About NEI Corporation

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, which are sold under the registered trademark NANOMYTE® and are backed by a suite of issued and pending patents. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

,

A New Perspective on Coatings and Surface Treatments

NEI Corporation’s Patented Technologies Provide a New Perspective on Coatings and Surface Treatment

Patents1Gains in productivity and efficiency are possible when a coating or surface treatment provides functionalities beyond the usual protective and aesthetic properties. This realization has sparked great interest in functional coatings in recent years for applications that traditionally have not used paints or coatings. A good example is the use of anti-ice coatings on power transmission lines. Mitigating ice accumulation will help prevent power outages, which has a tangible and beneficial economic impact. Another example is the use of a surface treatment to increase the efficiency of power generation turbines.

Examples of functionalities of interest for both industrial and consumer applications include:

  • Self-Healing: the coating or surface treatment autonomously repairs damage
  • Hydrophobicity: coated surfaces vigorously repel water droplets
  • Oleophobicity: prevents “oil” molecules from sticking to the surfacePatents2
  • Self-Cleaning / Easy-To-Clean: minimizes or eliminates the need for chemicals during washing

While great strides have been made in academic circles to understand the different surface phenomena of these so called ‘smart coatings’, commercial products to date have met with limited success because they are not engineered to meet all of the functional performance requirements that an application may need. For example, commercially available superhydrophobic coatings repel water droplets, but do not prevent the diffusion of water vapor – minimizing moisture ingress is a critical functionality for most protective coatings.

Patents3More often than not, many of the functionalities mentioned above need to be integrated into a single coating or surface treatment. For example, a transparent coating that resists finger printing also needs to be scratch resistant and durable. A coating that prevents fogging in eyewear and other transparent surfaces must also be durable and resistant to chemicals. Further, in order to meet the cost criteria, application of the coating must be compatible with conventional coating methods such as spray, dip, brush or flow. Over the past few years, NEI Corporation’s concerted efforts to develop and implement practical, multi-functional coatings are now coming to fruition.

Patents4Backed by a bevy of issued and pending patents, NEI has introduced an array of coating products under the registered trade name NANOMYTE®. For example, NANOMYTE® MEND is based on US Patent 8,987,352, where a thermally induced, physical self-healing phenomenon leads to gap closing and crack sealing. The self-healing coating involves a unique phase-separated morphology that facilitates the delivery of the self-healing agent to the damage site (such as a scratch or crack) thereby restoring the coating appearance & function. Utilizing commonly available polymer materials and nanoparticles arranged in a unique morphology to achieve self-healing, MEND offers a practical self-healing solution to common polymer coating systems. In response to the need for waterborne, self-healing coatings for non-metallic substrates, NEI developed a waterborne, polyurethane-based, self-healing coating. NANOMYTE® MEND for wood (US Patent 8,664,298) specifically targets the wood cabinet market. A more recent patent-pending version of MEND, referred to as MEND-RT, allows self-healing at near ambient temperature. It is used as the inter-layer of a coating stack and has been shown to enhance the corrosion resistance of traditional coating systems. The MEND coating platform is based on polyurethane, but the principle can be applied to other coating systems as well.

Patents5Self-healing principles can also be applied to surface treatments of metals, whereby the pretreatments can mimic the performance of chromate conversion coatings. To this end, NEI has developed a series of pretreatments for different metals where a chemical self-healing mechanism imparts corrosion resistance. For example, NANOMYTE® PT-60 is a patent-pending conversion coating for use on magnesium alloys. The nanoscale structure of the surface allows ions to diffuse to the damage site, forming a barrier that prevents further corrosion. In addition, PT-60 has been engineered to act as a tie layer that bonds the overlying primer with the metal, thereby leading to excellent performance in the field. Similarly, NEI’s NANOMYTE® PT-10M provides self-healing protection for aluminum, while patent-pending PT-20 is designed for use on steel, and PT-30 (US Patent 8,741,074) is used on copper alloys.

As previously mentioned, combining multiple functionalities in a coating, such as self-healing and superhydrophobicity, presents new opportunities not available until now. For example, NEI has been issued a patent (US Patent 8,968,459) for a superhydrophobic coating composition that also has a self-healing function similar to that of plant leaves. This self-healing, superhydrophobic coating mimics lotus leaves, which maintain their superhydrophobicity by repairing the damaged surface layer with a continuously-secreting hydrophobic epicuticular wax. Equipped with the ability to repair or renew itself, the novel NEI coating overcomes the durability problem of traditional superhydrophobic coatings.

Patents6Durable hydrophobic coatings are highly desirable for numerous applications as they usually impart easy-to-clean and stain-resisting properties to surfaces. For aesthetic reasons, there is also a need for a thin, transparent, easy-to-clean coating that does not add excess weight and does not change the appearance of the substrate to be coated. Further desirable properties of such coatings include a high degree of scratch/abrasion resistance, excellent adhesion, and chemical resistance, all of which are critical in maintaining a durable coating. In addressing these needs, NEI’s recently developed NANOMYTE® SuperCN and SR-100EC products are patent-pending transparent coatings with a unique combination of properties, including easy-to-clean and stain-resisting properties, excellent abrasion/scratch resistance, as well as good adhesion with a variety of substrates – including polymers, metals, and ceramics.

Patents7Scratch resistance is a sought-after property for coatings in a variety of applications, such as ophthalmic and sports-wear lenses, automobile and airplane windows. Plastic substrates, such as polycarbonate and acrylic, can scratch easily and lose transparency quickly during daily use and maintenance. Hard and optically transparent coatings for plastic substrates possess a significant market potential. NEI offers a patented (US Patent 9,006,370) transparent, scratch-resistant coating called NANOMYTE® SR-100, which exhibits significantly better abrasion resistance than commercially available, scratch-resistant coating products. A matte version of SR-100 has also been developed and is now commercially available.

Download Coatings Technology Brief (pdf) »

 


About NEI Corporation:

NEI is an application driven company that manufactures and sells Advanced Materials products, provides materials development services, and performs contract-based R&D for public and private entities. NEI’s products, which are sold under the registered trademark NANOMYTE®, are backed by a suite of issued and pending patents. NEI has built a strong manufacturing and R&D infrastructure that enables rapid transition of concepts to products. The company has a 10,000 square foot, state-of-the-art materials manufacturing and testing facility in Somerset, New Jersey, which includes high temperature furnaces with controlled atmospheres, mixing, blending and drying equipment, coaters, particle characterization instruments, corrosion testing equipment, polymer films & coatings characterization, and a Li-ion battery testing laboratory. Since its inception, NEI has partnered with small companies, large multinational corporations, U.S. Defense Laboratories, U.S. National Laboratories, and Universities. The relationships take on different forms, ranging from a strategic partnership to joint development efforts targeted at specific applications.

Contact Us »

 

,

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating


December 3, 2014

Somerset, New Jersey (USA): NEI Corporation announced today that it has introduced NANOMYTE® SuperAi – a nanocomposite coating that imparts anti-icing properties to the underlying substrate. The transparent coating also provides a hard, dense and smooth finish. Surfaces treated with SuperAi exhibit reduced ice adhesion, thereby preventing ice buildup. SuperAi can be applied to a variety of substrates, including plastics, metals, glass, and ceramics. In some instances, a suitable primer may be required for maximum adhesion of the anti-ice coating.

NANOMYTE® SuperAi is a single component coating that is easily applied by dip, spray, or brush. Potential applications include occurrences where ice removal is a challenge (e.g., wind turbine blades, power transmission lines and cables, windshields and other glass surfaces in automobiles). The coating also provides durability and additional corrosion protection. The figure below is an example of how SuperAi can eliminate ice buildup on a substrate.

SuperAi

SuperAi is uniquely engineered so that the treated surface becomes highly slippery and hydrophobic, which facilitates the reduction in ice adhesion. Data obtained so far by our customers and collaborators indicate that SuperAi is effective in mitigating buildup under icing conditions. For example, in a simulated industrial trial, ice accretion on coated and uncoated aluminum conductor cables were measured. The outside of one cable was coated with SuperAi. Both coated and uncoated conductors were subjected to icing conditions for two hours under a regulated spray of water and ice solution at fixed time intervals. Ice accumulation was determined by weighing the cables before and after the test. It was established, in multiple test runs, that the ice accretion was reduced to half with application of the coating. Similar results were obtained on sections of a wind turbine. In addition, in-house measurements of ice adhesion strength with a force gauge show that SuperAi reduces the adhesion tendency significantly.

NANOMYTE® SuperAi can be applied on clean surfaces using a commercial high volume, low pressure (HVLP) spray gun. The coating can also be applied using a roller or brush, where coating is done in a cross-pattern; left to right, then up and down as quickly as possible since the coating dries quickly. SuperAi can be cured at room temperature by exposing the coating to ambient conditions for 6 to 8 hours. Accelerated curing is achieved in 1 hour or less at temperatures in the range of 100 – 150°C. NANOMYTE® SuperAi is available in one liter bottles, 5 gallon pails, and 55 gallon drums.


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.


For more information, contact:

Ms. Krista Martin
(732) 868‐3141
sales@neicorporation.com
###

,

NANOMYTE® SuperCN Plus – A New Generation of Durable Superhydrophobic Coatings

March 26, 2014

Somerset, New Jersey – NEI Corporation announced today that it has introduced NANOMYTE® SuperCN Plus – a functionally graded coating that imparts superhydrophobic properties to the underlying substrate while providing greater abrasion resistance compared to existing superhydrophobic coatings. Surfaces treated with SuperCN Plus force liquids to bead up and roll off, shedding water instantly and leaving the surface completely dry. SuperCN Plus can be applied to a variety of substrate materials, including plastics, metals, glass, painted surfaces, and fabrics.

NANOMYTE® SuperCN Plus consists of a hard and abrasion resistant outer layer that transitions to a softer material closer to the substrate. Such a functionally graded coating represents a major advancement in the state of the art and is in sharp contrast to monolithic superhydrophobic coatings that consist of a relatively soft material that is easily abraded or rubbed away.

Both panels above were coated with superhydrophobic coatings and subjected to equal abrasion conditions. The panel on the left (commercial coating) shows abrasion marks, while the panel on the right (SuperCN Plus) shows no visible signs of wear.

Figure 1 – Both panels above were coated with superhydrophobic coatings and subjected to equal abrasion conditions. The panel on the left (conventional off-the-shelf coating) shows abrasion marks, while the panel on the right (SuperCN Plus) shows no visible signs of wear.

Superhydrophobic coatings rely on creating and maintaining a composite of micro and nano-sized surface structures that work together to trap a layer of air that can repel most liquids. Off-the-shelf superhydrophobic coatings tend to have poor durability because they are unable to protect these delicate surface structures from abrasion, resulting in rapid loss of superhydrophobicity. Due to the graded structure, SuperCN Plus maintains its superhydrophobicity and high contact angle even after moderate damage. Additionally, it exhibits good adhesion to the substrate.

Surfaces treated with SuperCN Plus show water contact angles as high as 165°. After moderate abrasion, where traditional superhydrophobic coatings begin to show significant damage and delamination, SuperCN Plus remains intact and has been shown to preserve its superhydrophobicity with contact angles over 158°.

Figure 2 – Water droplets on a metal substrate surface coated with NANOMYTE® SuperCN Plus, showing a high contact angle > 150°.

Figure 2 – Water droplets on a metal substrate surface coated with NANOMYTE® SuperCN Plus, showing a high contact angle > 150°.

Since the superhydrophobic coating is enabled by innovations in both process and materials, NEI is currently offering in-house coating services for industrial applications wherein customers can send parts of any geometry and size. The turnaround time is expected to be no more than 3 – 5 business days. If needed, the modular Super CN Plus coating process can be transferred to the OEM site.

For a video demonstration, view here.

Download Press Release (pdf) »

 


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, contact us.