Posts

, ,

NEI Introduces Fast-cure Anti-fog Coating

August 19, 2020

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced NANOMYTE® SAF-200, a fast cure, durable anti-fog coating with excellent water resistance. The development of the new coating has come about as a result of incorporating years of experience in tailoring the chemistry of coatings to meet customer needs. SAF-200 is amenable to spray, dip, flow, roll, and gravure coating processes, and can be cured within 2 to 5 minutes at a temperature range of 80 – 120 °C.

Anti-fog coatings generally work by creating a hydrophilic surface where condensed moisture spreads into an even film without forming droplets. These coatings have typically suffered from limited anti-fog performance, insufficient abrasion resistance and poor cleanability. NEI’s anti-fog coatings overcome these issues and provide excellent abrasion resistance in addition to anti-fog characteristics. The novel coating technology is based on NEI’s patented scratch-resistant transparent coating, commercially known as NANOMYTE® SR-100. The scratch resistant base coating formulation has been modified with unique amphiphilic compounds which are locked into the coating matrix, thereby leading to durable anti-fog performance. The scratch-resistant coating matrix provides a high degree of mechanical stability.

NANOMYTE® SAF-200 is ideally suited for surfaces where prevention of fogging is needed, such as face shields, respirators, goggles, outdoor signage, camera lenses, environmental enclosures, bathroom mirrors, and other applications where fogging needs to be mitigated. The 2-part liquid coating solution can be applied by dipping, spraying, roll or flow coating. NEI also offers in-house coating services for customer’s parts as well as coating development services, wherein coating formulations are created to address specific customer requirements.

The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings. The coatings are versatile and can be applied on a variety of substrates – including glass, plastic, fiber-composite, metal, and ceramic.

Additional Information: Technical Data Sheet | Safety Data Sheet (Part A) ♦ (Part B)

Download Press Release (pdf) ↓


About NEI Corporation: NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

New Anti-ice System Advances to Next Technology Level

Full-scale Prototype Demonstration of a New Hybrid Technology to Prevent Icing on Aircraft and Drones

January 15, 2020

Somerset, NJ (USA) – Invercon Inc. and NEI Corporation announced today that their newly developed de-icing system was tested successfully at the NASA Glenn Research Center’s Icing Research Tunnel. The test was witnessed by engineers and scientists at the Research Center, as well as from the industry. The Invercon-NEI team met the objective of demonstrating a low power anti-ice system in conjunction with NEI’s NANOMYTE® SuperAi anti-ice coating that prevents ice accretion on the leading edge of an airfoil. The test was performed on a full-size airfoil under simulated in-flight conditions, following nearly two years of development and laboratory testing.

All commercial aircraft have a built-in ice protection system, which could be either a thermal, thermo-mechanical, electro-mechanical, or pneumatic system. A common issue with de-icing devices is that they consume substantial power. Aircraft generally look to reduce power consumption, and with the advent of battery-powered aircraft, mechanisms or features that reduce power consumption are critically important. Icing presents a particular challenge for commercial and military drones, where ice can build up on the wings and propellers and result in crashes. In fact, the current practice is not to fly drones when icing conditions are predicted. Applying a passive anti-ice coating that functions synergistically with an active de-icing device is an attractive hybrid approach, which the team of NEI and Invercon has now demonstrated on full-scale prototypes.

NEI’s NANOMYTE® SuperAi anti-ice coating is a durable coating, suitable for permanent application. The coating leads to a lubricating surface that drastically reduces the adhesion strength of ice – by as much as 80%, compared to bare polished aluminum. The coating is usually applied by spraying, similar to conventional painting. NANOMYTE® SuperAi coating is available for commercial use.

Figure 1: MQ-1 wing test section installed in the IRT tunnel.

Invercon has developed a new, retrofittable, electro-pneumatic deicing system that combines the most attractive aspects of several existing systems without their associated drawbacks. The Invercon system requires remarkably low power (≤ 2.5 kW), is retrofittable on any airfoil, adds very little weight (~50 lbs), and is durable enough to last the life of the aircraft once retrofitted. Importantly, the system looks, feels, and acts like the original leading edge and can provide millions of maintenance-free deicing cycles. The entire wing test section (Figure 1) was coated with NANOMYTE® SuperAi.

Invercon successfully completed icing tests of the electro-pneumatic deicing system at NASA Glenn’s Icing Research Tunnel (IRT) under a full range of representative icing conditions. The Invercon system was able to provide continuous deicing of the wing section leading edge over all of the test conditions ranging from temperatures of -3°C to -20°C with various liquid water content. Typically, the system allows ice to accrete for about 2 minutes and then completely sheds upper and lower surface ice upon system activation.

The testing at NASA’s IRT, which is the longest running icing facility in the world, has moved the hybrid technology to a readiness level of 6 (i.e., TRL6), which is a scale used by NASA and Department of Defense to gauge the maturity level of a technology.

Both NEI Corporation and INVERCON LLC are grateful for the financial support extended by the Small Business Innovation Research Program from the Air Force and NASA. The SBIR program funds product development efforts that reduce concepts to practice and then to prototypes, thereby reducing technology risk. The successful full-scale demonstration by the team has advanced a new technology to a state of commercial readiness.

View / Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities, such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

About Invercon LLC:

Invercon’s mission is to develop advanced technologies that enable revolutionary leaps forward in aircraft performance and safety.  For rotorcraft, these include centrifugally powered, pneumatic actuation systems that can actively trim rotors and de-ice rotor blades using almost no power or weight, resulting in significantly improved performance and safety.  For fixed wing aircraft, Invercon has developed extremely low power deicing solutions using a novel electro-pneumatic actuation approach.

For more information, give us a call or email us.

, ,

NEI’s UV-Protect Technology featured in Coatings World Magazine

September 2018

NEI has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

Read the Complete Article:

https://www.coatingsworld.com/issues/2018-09-01/view_breaking-news/nei-introduces-uv-protect-coating-technology

About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

,

NEI Corporation introduces UV-Protect Technology to NANOMYTE® Coating Line

March 7, 2018

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced UV-Protect (UVP) technology to formulate enhanced versions of its popular NANOMYTE® coating products, which offer unique functionalities in coatings with unparalleled durability. The NANOMYTE® line of protective coatings and surface treatments provide tailored functionalities, such as hydrophobicity, superhydrophobicity, oleophobicity, superoleophobicity, self-healing, fog resistance, self-cleaning (or easy-to-clean), scratch resistance, anti-corrosion, and anti-icing. They have found wide applicability in the industrial and automotive markets for their versatility and ability to be applied to a variety of surfaces – including glass, plastic, fiber-composite, metal, and ceramic. UVP technology imparts enhanced protection from the effects of sun and weather exposure to maintain the unique properties of their coating products when subjected to long-term outdoor exposure.

The newly-introduced product lineup consists of:

UVP Technology Brief (pdf)

NANOMYTE® coating products with UVP technology have demonstrated their ability to endure a minimum of 1,000 hours of weatherability testing per ASTM D4587, “Accelerated Weathering under Fluorescent UV-Condensation Exposure.” The testing was performed in a QUV chamber under the conditions specified in ASTM G154, Cycle 1, the most commonly used exposure cycle designed to simulate severe outdoor service conditions. The UVP functionality has been incorporated into each coating system without degrading other performance characteristics or ease of application. The cured film is both inherently resistant to the sun’s UV radiation, as well as capable of providing UV protection for the underlying surface. This, for example, allows the NANOMYTE® MEND product line to maintain excellent gloss and appearance in outdoor applications, such as automotive coatings. Polymer and composite materials can be particularly sensitive to the effects of UV exposure, which can have a variety of undesirable effects, beginning at the surface and often spreading throughout the bulk of the material. Surface attack immediately begins to compromise coating adhesion, eventually resulting in cracking and peeling. UV-degraded materials may also change colors, often resulting in the familiar yellowing of plastics and lose mechanical strength, making them prone to failure. UVP coatings block UV radiation, which protects surfaces by preserving coating adhesion and aesthetics, and prevents further penetration of UV light which can compromise the material’s strength and appearance.

Outdoor exposure can present additional challenges for surfaces to resist buildup of dirt, airborne contaminants, corrosion, and even ice. NEI’s line of durable protective topcoats, formulated as one-component, ambient-cure systems for ease of use, now offer UVP technology to extend their performance and shield sensitive surfaces. NANOMYTE® SR-500EC-UVP can protect a wide variety of surfaces from the effects of outdoor exposure, coupled with an easy-to-clean functionality with enhanced weatherability. For surfaces prone to icing, NANOMYTE® SuperAi-UVP not only helps keep surfaces clean, but also enhances their ability to shed ice buildup, all while providing excellent protection from the elements. Both of these coatings can maintain excellent hydrophobicity, with a static water contact angle of 100 – 105°, even after 2,000 hours of QUV exposure, while NANOMYTE® SuperAi-UVP maintains a low ice adhesion value of less than 1 psi after more than 1,000 hours of exposure. NANOMYTE® TC-4001-UVP and TC-5001-UVP have been optimized for metals to form a hard, durable coating with excellent barrier properties to prevent moisture penetration and corrosion.

NEI’s coating products featuring UVP technology can be applied by conventional processes, such as dipping, brushing or spraying. NEI also offers in-house coating services for customer’s parts, as well as coating development services, wherein coating formulations are created to address specific customer requirements. The development of NANOMYTE® UVP functional coatings has come about as a result of NEI’s capabilities in creating functionalized nanocomposite coatings. In addition to imparting protective and aesthetic properties, NANOMYTE® coatings lead to gains in productivity and efficiency and therefore can be used in many applications that traditionally have not used paints or coatings.

Additional Information:

Download Press Release (pdf) ⇓


About NEI Corporation:

NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces, with tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, give us a call or email us.

, ,

NEI Releases a Newly Improved Version of NANOMYTE® SuperCN – a Durable, Hydrophobic / Oleophobic Coating


February 29, 2016

Somerset, New Jersey (USA) – NEI Corporation announced today that it has introduced an improved version of its NANOMYTE® SuperCN coating. NANOMYTE® SuperCN – a micron-thick, transparent, and highly durable hydrophobic / oleophobic coating – was originally developed for promoting dropwise condensation in condensers to enhance heat transfer efficiency. The newly updated version has increased SuperCN’s ability to repel water and oils, with an improved adhesion to substrates, higher abrasion resistance, and better chemical and solvent resistance, all while remaining highly transparent. The SuperCN coating exhibits excellent anti-fingerprinting, anti-fouling, stain-resistant and easy-to-clean properties. The coating does not change the appearance of the substrate to be coated.

NEI’s SuperCN coating is based on a patent-pending composition comprised of sustainable functionalized perfluoropolyethers (PFPEs) that do not contain perfluorooctanoic acid (PFOA). Although PFPEs are known for their non-stick and lubricating properties, it has been a major technical challenge to incorporate them into a stable formulation that can lead to a coating with sufficient adhesion to various substrates. NEI’s SuperCN formulation overcomes this stability issue. Additionally, while PFPE-based, easy-to-clean coatings that are currently on the market generally form very thin (< 100nm) coatings, SuperCN coatings have a thickness of 2-5 microns, thereby creating a more mechanically stable coating that cannot be easily removed by abrasion or harsh cleaners and chemicals.

The contact angles of SuperCN-coated surfaces are 108 – 120° for water and 60 – 70° for hexadecane. The hydrophobicity and oleophobicity are maintained after thousands of rubs against a wool felt abrasion wheel (ASTM D1044). Additionally, the measured Δ Haze is less than 3% on polycarbonate substrates (CS-10F wheels, 500 gram load, 500 cycles). NANOMYTE® SuperCN adheres exceptionally well via covalent bonding with glass, ceramics, and basic metals (such as aluminum, zinc, and tin plate) with a standard industrial cleaning method. For passivated or noble metals – such as stainless steel, chrome, titanium, and copper alloys – NEI has developed a novel and specific surface pretreatment procedure to activate the surface before the application of SuperCN, leading to durable adhesion. Furthermore, the coating can also be applied to plastics (such as polycarbonate, PMMA, PET, polyurethane, and epoxy) with or without the use of a primer depending on the activation state of the substrate. NEI supplies a primer product, NANOMYTE® SR-Primer, which works well with a range of plastics.

The development of SuperCN was spurred by a high number of requests from customers that expressed a need for a relatively thin coating that is highly hydrophobic and oleophobic, but also hard and transparent. SuperCN is easy to use and ideally suited for a variety of commonly used consumer products, such as kitchen appliances, shower heads, hand rails, faucets, dining tables, shower doors, medical devices, optical lenses, and touch screens. The liquid coating solution can be applied by dipping, spraying, roll or flow coating, and is thermally cured at 80 – 150°C (a room temperature cure version is also available). NEI offers NANOMYTE® SuperCN in liter or gallon quantities, or through its in-house coatings service for customer parts. Finally, NEI also provides development services, wherein coating formulations are created to address specific customer requirements.

Additional Information:

About NEI Corporation:

NEI Corporation is an applications-driven company that utilizes nanotechnology to develop and manufacture Advanced Materials for a broad range of markets. The company’s materials and process technologies are protected by a total of seventeen patents. NEI offers an array of Advanced Protective Coatings for glass, metal and polymer surfaces. The coatings have tailored functionalities such as anti-corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.

For more information, contact:

Ms. Krista Martin
+1 (732) 868‐3141
sales@neicorporation.com
###

View / Download Press Release (pdf)